首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphocytic choriomeninigitis (LCM) virus defective interfering (DI) particles form foci of protected cells in a monolayer under an agarose-containing overlay medium. Foci originate from one cell dually infected with at least 1 interference focus-forming unit and infectious virus. As a result, an interfering factor is produced and released which interacts with neighboring cells, thereby protecting them against cytopathic lysis by challenge virus. The property of individual LCM virus DI particles to induce countable foci has been made the basis of quantitative assay that is comparable in every respect to the plaque assay of infectious virus and is much more sensitive and probably more accurate than other procedures used to measure LCM virus DI particles. LCM virus was passaged, undiluted, 10 times in cell cultures. When yields were analyzed as to concentrations of PFU and interference focus-forming units, both entities were found to fluctuate with the pattern expected from theoretical considerations.  相似文献   

2.
3.
When chromosome preparations made by the conventional air-drying method were processed with the OsO4/TCH technique and examined by scanning electron microscopy (SEM), spiral structures in chromatids, which have been frequently observed to be present by light microscopy, were found to be composed of 30 nm fibres. In some portions these fibres appeared to be arranged in coils to form thicker fibres. When chromosome preparations were processed for SEM without air drying, chromosomes appeared to consist of fairly homogeneous thick fibrous structures measuring about 200 nm in diameter. In relatively condensed chromosomes, these 200 nm fibres appeared to be arranged perpendicular to the long axis of the chromatid. These findings suggest that chromatid spiral structures represent a regularly loosened state of the compactly spiralized 200 nm fibres which in turn consist of spiralized 30 nm fibres.  相似文献   

4.
The cell walls of Chlamydia psittaci (meningopneumonitis strain) were examined by the freeze-etching and negative staining techniques. It was observed that the cleaved convex surface of the developmental, reticulate body was covered with numerous non-etchable particles 9 to 10 nm in diameter, these particles being rarely seen on the concave surface. Similarly, the convex surface of the mature, elementary body (EB) was covered with many particles but the concavity lacked these particles. After etching, the smooth concave surface of the EB appeared to have a hexagonally arrayed subunit structure, on which the button structure (B structure) was observed. Each B structure had a diameter of 27 nm and several B structures were grouped together in a hexagonal arrangement with a center-to-center spacing of 45 nm. In a limited area of the negatively stained EB cell wall, hexagonally arrayed rosette structures were present, with a center-to-center spacing similar to the B structures seen in the freeze-etched preparation. Each rosette, about 19 to 20 nm in diameter, appeared to be composed of a radial arrangement of nine subunits. The freeze-fractured cell wall-cytoplasmic membrane complexes indicated that the outer surface of the cytoplasmic membrane which appeared as the convex surface was covered with the fine particles, and thus it was likely that frozen EB was cleaved at the gap between the cell wall and ctyoplasmic membrane. On the cleaved inclusion, several groups of fine particles were observed. In each group, the particles were arranged hexagonally with the spacing ranging from 20 to 50 nm.  相似文献   

5.
6.
Three cell lines from resident macrophages of BALB/c mice and four from activated macrophages of the same strain were isolated by infection with simian virus 40 (SV40). A majority of these cells showed dependency on L cell-conditioned medium (LCM), which is necessary for proliferation of normal macrophages in vitro. Somatic cell hybridization was applied in the study of macrophage growth responsiveness. A macrophage cell line (BR15) with strict dependency on LCM for growth was fused to a Chinese hamster cell line (hs222-16); it was found that dependency on LCM was a dominant trait in the hybrids. Following fusion of a macrophage cell line (BAM3) which grew without LCM to hs222-16, a large number of colonies appeared in the selection medium containing LCM. Four hybrids not requiring LCM for growth were selected in an LCM-free culture, and their hybrid properties were examined. Three out of the four hybrids secreted colony-stimulating factor (CSF) constitutively, whereas the fourth secreted no CSF. The level of acid phosphatase activity in the hybrids was higher than in the parent cells. Two peaks of CSF activity were observed after gel filtration chromatography of conditioned medium: One was eluted at molecular weight of 36,000 and the other at 17,000.  相似文献   

7.
The purpose of this study was to examine the stability of biopolymer particles formed by heating electrostatic complexes of β-lactoglobulin and sugar beet pectin together (pH 5, 80 °C for 15 min). The effects of electrostatic interactions on the formation and stability of the particles were investigated by incorporation of different salt levels (0 to 200 mM NaCl) during the preparation procedure. Biopolymer particles were characterized by turbidity, electrophoretic mobility, dynamic light scattering, and visual observance. Salt inclusion (≥25 mM) prior to heating β-lactoglobulin/pectin complexes led to the formation of large biopolymer particles (d > 1,000 nm) that rapidly sedimented, but salt inclusion after heating (0 to 200 mM) led to the formation of biopolymer particles that remained relatively small (d < 350 nm) and were stable to sedimentation. The biopolymer particles formed in the absence of salt remained stable over a wide range of pH values (e.g., pH 3 to 7 in the presence of 200 mM NaCl). These biopolymer particles may therefore be suitable for application in a number of food products as delivery systems, clouding agents, or texture modifiers.  相似文献   

8.
Flow cytometry was evaluated for its capacity to detect and distinguish a wide size range (20–2000 nm) of fluorescent polystyrene particles (PSPs). Side scatter and fluorescence parameters could predict dispersed PSP sizes down to 200 nm, but the forward scatter parameter was not discriminatory. Confocal microscopy of flow-sorted fractions confirmed that dispersed PSPs appeared as a single sharp peak on fluorescence histograms, whereas agglomerated PSPs were detected as smaller adjacent peaks. Particles as small as 200 nm could also be detected by flow cytometry after they were first phagocytized by J774A.1 murine macrophages. Confocal microscopy demonstrated that these PSPs were internalized within the cytoplasm. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and calcein–AM (acetoxymethyl ester) assays showed that they were not cytotoxic. Internalized PSP size correlated to both cellular side scatter (R2 = 0.9821) and fluorescence intensity (R2 = 0.9993). Furthermore, PSPs of various sizes could be distinguished when J774A.1 cells were loaded with a single size of PSP and mixed with cells containing other sizes. However, spectra of cells loaded with a mixture of PSP sizes resembled those containing only the largest PSP. These data demonstrate the capacity and limitations of phagocytosis-coupled flow cytometry to distinguish between dispersed and agglomerated states and detect a wide size range of particles.  相似文献   

9.
Electron Microscopy of Equine Infectious Anemia Virus   总被引:11,自引:6,他引:5       下载免费PDF全文
Equine infectious anemia (EIA) virus was observed in thin sections of infected cultured horse leukocytes by electron microscopy. The virus particles had a spherical shape and were between 80 and 120 nm in diameter. Most of them contained an electron-dense nucleoid 40 to 60 nm in diameter. They were observed to form by a process of budding from the plasma membrane and appeared to have thin surface projections. The particles described were not detected in uninfected cultured cells, and their appearance could be prevented by adding EIA immune serum to the inoculum. The implications of these findings in the classification of EIA virus are discussed.  相似文献   

10.
我国香菇人工栽培历史悠久;在今天纯种人工栽培同样是食用菌生产的主要方向。经查上海栽培香菇“菌种”内生长不正常的菌丝体制剂中有直径为20nm,长度多为100—200nm的类似棒状病毒颗粒。在接种后14—20天,生长缓慢的菌丝体中有直径为28、36、40nm三种不同大小的类似球状病毒颗粒,未见棒状颗粒。在香菇子实体的制剂中同样见到与菌丝体中一样的球状颗粒以及大小为15—16nm×100—300nm的较细的棒状颗粒。病香菇菌褶超薄切片中显示棒状颗粒结晶及球状颗粒的聚集;在液泡中有直径为15—16nm的棒状颗粒。  相似文献   

11.
By using atomic force microscope (AFM), the topography and function of the plasmalemma surface of the isolated protoplasts from winter wheat mesophyll cells were observed, and compared with dead protoplasts induced by dehydrating stress. The observational results revealed that the plasma membrane of living protoplasts was in a state of polarization. Lipid layers of different cells and membrane areas exhibited distinct active states. The surfaces of plasma membranes were unequal, and were characterized of regionalisation. In addition, lattice structures were visualized in some regions of the membrane surface. These typical structures were assumed to be lipid molecular complexes, which were measured to be 15.8±0.09 nm in diameter and 1.9±0.3 nm in height. Both two-dimensional and three-dimensional imaging showed that the plasmalemma surfaces of winter wheat protoplasts were covered with numerous protruding particles. In order to determine the chemical nature of the protruding particles, living protoplasts were treated by proteolytic enzyme. Under the effect of enzyme, large particles became relatively looser, resulting that their width was increased and their height decreased. The results demonstrated that these particles were likely to be of protein nature. These protein particles at plasmalemma surface were different in size and unequal in distribution. The diameter of large protein particles ranged from 200 to 440 nm, with a central micropore, and the apparent height of them was found to vary from 12 to 40 nm. The diameter of mid-sized protein particles was between 40―60 nm, and a range of 1.8―5 nm was given for the apparent height of them. As for small protein particles, obtained values were 12―40 nm for their diameter and 0.7―2.2 nm for height. Some invaginated pits were also observed at the plasma membrane. They were formed by the endocytosis of protoplast. Distribution density of them at plasmalemma was about 16 pits per 15 μm2. According to their size, we classified the invaginated pits into two types―larger pits measuring 139 nm in diameter and 7.2 nm in depth, and smaller pits measuring 96 nm in diameter and 2.3 nm in depth. On dehydration-induced dead pro-toplasts, the degree of polarization of plasma membranes decreased. Lipid molecular layers appeared relatively smooth, and the quantity of integral proteins reduced a lot. Invaginated pits were still de-tectable at the membrane surface, but due to dehydration-induced protoplast contraction, the orifice diameter of pits reduced, and their depth increased. Larger pits averagely measuring 47.4 nm in di-ameter and 31.9 nm in depth, and smaller pits measuring 26.5 nm in diameter and 43 nm in depth at average. The measured thickness of plasma membranes of mesophyll cells from winter wheat examined by AFM was 6.6―9.8 nm, thicker in regions covered with proteins.  相似文献   

12.
The development of acetylcholine receptors on Xenopus embryonic muscle cells both in culture and in situ was studied using electrophysiology and freeze-fracture electron microscopy. Acetylcholine sensitivity first appeared at developmental stage 20 and gradually increased up to about stage 31. Freeze-fracture of muscle cells that were nonsensitive to acetylcholine revealed diffusely distributed small P-face intramembraneous particles. When cells acquired sensitivity to acetylcholine, a different group of diffusely distributed large P-face particles began to appear. This group of particles was analyzed by subtracting the size distribution found on nonsensitive cells from that found on sensitive cells. We call this group of particles difference particles. The sizes of difference particles were large (peak diameter 11 nm). The density of difference particles gradually increased with development. The density of small particles (less than 9 nm) did not change with development. At later stages (32-36) aggregates of large particles appeared, which probably represent acetylcholine receptor clusters. The size distribution of difference particles was close to that of the aggregated particles, suggesting that at least part of difference particles represent diffusely distributed acetylcholine receptors. Difference particles exist mostly in solitary form (occasionally double), indicating that an acetylcholine receptor can be functional in solitary form. This result also shows that diffuse acetylcholine receptors that have previously been observed with 125I- alpha-bungarotoxin autoradiography do indeed exist in solitary forms not as microaggregates.  相似文献   

13.
Unique particles of barley yellow streak mosaic virus (BYSMV) were detected in diseased barley, wheat, and several species of grass. They appeared to be about 64 nm in width and from 127 nm to an astonishing 4000 nm in length. Individual particles were circular in transverse section. The outermost layer of each particle seemed to be a membrane-like envelope. The internal structure of many particles was bead-like. Some particles had centers that were translucent. The BYSMV particles were distributed throughout the leaf, sheath, root, and own organs of barley. Virus particles were present in all cell types of the epidermis, mesophyll, phloem, and xylem. However, mesophyll cells contained the greatest number of particles. Most BYSMV particles occurred in large clusters of quasi-parallel arrays. Both individual and groups of particles were located within the cavities of ER elements. Ribosomes were attached to some outer surfaces of the ER bounding membrane. BYSMV particles are unique because they do not resemble any in presently classified groups or families of plant viruses: they are, however, similar to those of some unclassified viruses that infect insects.  相似文献   

14.
Purified preparations of lymphocytic choriomeningitis virus (LCM virus) contain three classes of RNA. The previously described 18s, 23s, 28s, and 31s RNAs, where the 23s and 31s RNAs are viral-specific, and the 18s and 28s RNAs probably are host RNAs incorporated in the virion. Now, 4s, 5s, and 5.5s RNAs can be isolated as well. Thus five RNAs which migrate by acrylamide gel electrophoresis as ribosome-derived RNA can be isolated from purified LCM virus. This observation further supports the reports that arenaviruses may contain ribosomes. The ribosome-derived RNA can be synthesized both before and after the virus infection. The viral 23s could be a hydrogen-bonded complex forming the 31s RNA, or it could be contained in defective interfering LCM virus particles; these possibilities are examined.  相似文献   

15.
Mizuta  Shun 《Plant & cell physiology》1985,26(8):1443-1453
The assembly of cellulose synthesizing complexes (terminal complexes,TCs) on the plasma membrane of Boodlea coacta was investigatedduring the formation of both the matrix-rich layer (MRL) andfibril-rich layers (FRLs) of cell walls. The TCs appeared tobe located mostly within the outer leaflet of the plasma membrane,and were observed as elliptical protrusions consisting of manyparticles of about 9 nm in diameter. Their length varied from100 to 500 nm (average, 220 nm) during MRL formation and from100 to 860 nm (average, 360 nm) during FRL formation. A correlationwas found between the length of TCs and the microfibril widthin both MRL and FRL. On the E-face of the plasma membrane, numerous round protrusions(30–130 nm in diameter), consisting of many particles,8–10 nm in diameter, were also present. Their densitywas greater during FRL formation than during MRL formation.Some of these structures larger than 100 nm were associatedwith microfibril impressions and some appeared to be bound tothe TCs. These protrusions increased in number with Calcofluortreatment but decreased in number when the dye was removed fromthe culture medium. Thus, the TCs may be assembled from massesof particles aggregated on the outer surface of the plasma membrane,and may grow longer by incorporation of these masses. The appearanceof the longer TCs during FRL formation is probably due to thegreater density of these masses. (Received May 1, 1985; Accepted August 16, 1985)  相似文献   

16.
Intima from aortas of normal Watanabe Heritable Hyperlipidemic (WHHL) and cholesterol-fed (10 days - 3 months) rabbits were examined by ultra-rapid freezing without chemical fixation followed by rotary shadow freeze-etching. The extracellular matrix in areas devoid of cells was seen in extraordinary detail and consisted of a reticulum of thick filaments, finer branching filaments, collagen fibrils, and granules of varying sizes. No lipid deposits were seen in normal intima. However, the subendothelial region of WHHL intima was filled with collagen fibrils surrounding and entwined between clusters of discrete lipid vesicles that ranged in size from 23 to 169 nm. Approximately 80% of the lipid vesicles in the WHHL rabbit intima measured between 70 and 169 nm. The lipid particles in the WHHL intima always appeared in clusters, many of which appeared to be fusing into larger size vesicles. These aggregates were clearly linked to the matrix filaments. A similar deposition of lipid particles was seen in the extracellular matrix of cholesterol-fed rabbits but in contrast to the particle size distribution of the WHHL intima, more than 75% of the particles in the cholesterol-fed intima had a diameter between 23 and 68 nm and 51% were between 23 and 45 nm. We conclude that in cell-free areas of WHHL and after only 10 days of cholesterol feeding, lipoprotein-derived lipid is present in the intima as clusters of vesicles enmeshed in the complex extracellular matrix.  相似文献   

17.
38S (monoparticles) and greater than 50--200S ribonucleoprotein particles (polyparticles) from rat liver nuclei were treated with increasing concentrations of sodium chloride. Treatment of 38S or greater than 50--200S particles, with 0.14, 0.25, 0.5, 1.0, and 2.0M NaCl resulted in a decrease of protein to RNA ratios from 8 to 3.1 for 38S particles and from 4.0 to 1.5 for greater than 20--200S particles. Correspondingly the densities in CsCl increased. Whereas the maximum of the sedimentation profile of polyparticles decreased from 90S to 50S after treatment with increasing NaCl concentrations, a discontinuous change was found in the case of monoparticles. It was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis that the proteins which were dissociated by NaCl were in the molecular weight range of 30--45 000. Four of the 5 small molecular weight RNAs in the range of 4.5 to 8S remained tightly associated even after treatment of polyparticles with 2.0M NaCl. When 38S or 70--200S nRNP particles were exposed to increasing concentrations of NaCl (0.25, 0.5, 1.0, 2.0M), the molar ellipticity at 264 nm increased progressively to about 40%. Upon NaCl treatment of polyparticles and successive removal of the dissociated proteins by centrifugation the increase in the positive CD band at 264 nm was only 15%.  相似文献   

18.
Nonoccluded baculovirus-and filamentous virus-like particles were found in nuclei of hemocytes or midgut cells of field-collected spotted cucumber beetles. Each type of particle was associated with a different type of virogenic stroma containing various viral components similar to those referred to as capsid, nucleocapsid, viroplasm, and viral envelope in other known baculovirus infections. Nucleocapsids of the virus which occured only in hemocytes were rod-shaped particles approximately 230 nm long and 52 nm wide and were enveloped singly by a trilaminar unit membrane. Enveloped and partly enveloped particles appeared to be released from the nucleus to the cytoplasm by budding through the nuclear envelope acquiring additional membranes. The nucleocapsids of the virus which occurred only in nuclei of midgut cells were filamentous particles with an average diameter of 25 nm and variable length up to 2 μm. Some extremely long particles were bent almost 360° near the middle, resulting in a hairpin-like configuration. The particles were always enveloped singly. No particles budding through the nuclear envelope were observed.  相似文献   

19.
Trichomonas vaginalis is a flagellated, parasitic protozoan that inhabits the urogenital tract of humans. Some isolates of T. vaginalis are infected with a double-stranded RNA (dsRNA) virus, which was described in the literature as homogeneous icosahedral viral particles with an isometric symmetry and 33 nm in diameter. This study examined in detail the viral particles in T. vaginalis isolate 347 and describes a heterogeneous population of viral particles. The different dsRNA viruses were only observed after a change in the technique. The sample was prepared by the negative staining carbon-film method directly onto freshly cleft mica. The detected viruses ranged in size from 33 to 200 nm. Among the shapes observed were filamentous, cylindrical, and spherical particles. These results show that T. vaginalis may be a reservoir for several different dsRNA viruses simultaneously.  相似文献   

20.
Baculoviruses from five hymenopteran and eighteen lepidopteran species were studied by electron microscopy. Ten samples belonged to the unicapsid (UC) and eight to the multicapsid (MC) type of nuclear polyhedrosis viruses. Five were granulosis viruses (GV). Average dimensions of polyhedra and granules were 0.2?2.0 μm and 340–370 × 190–200 nm, respectively. Polyhedra contained up to 200 viruses. Average virus lengths were 232–370 (UC), 326–385 (MC), and 282–311 nm (GV). MC viruses contained up to 17 capsids. Oval particles and abnormally long or short viruses and capsids were present in most samples. Viruses of abnormal length constituted up to 26% of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号