首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

2.
From the whole plant of Ardisia japonica, four [1,4]benzoquinones were isolated by means of bioassay-directed fractionation of the EtOH extract. Apart from the two known compounds maesanin (1) and its congener 2, two new benzoquinones, i.e., 5-ethoxy-2-hydroxy-3-[(10Z)-pentadec-10-en-1-yl][1,4]benzoquinone (3) and 5-ethoxy-2-hydroxy-3-[(8Z)-tridec-8-en-1-yl][1,4]benzoquinone (4), were identified. All compounds showed significant in vitro bioactivities against the PTP1B enzyme, with IC50 values in the range of ca. 3-19 microM.  相似文献   

3.
4.
Four new caged xanthones (14) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (16) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (16) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining Km, Vmax, and the ratio of Kik and Kiv, which revealed that all the compounds behaved as competitive inhibitors.  相似文献   

5.
Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B.  相似文献   

6.
Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes.  相似文献   

7.
Chronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.210 cells by either pharmacological or siRNA means and examined the effects of such inhibition on Bcr-Abl expression and function. Herein we describe a novel mechanism by which the phosphatase activity of PTP1B is required for Bcr-Abl protein stability. Inhibition of PTP1B elicits tyrosine phosphorylation of Bcr-Abl that triggers the degradation of Bcr-Abl through ubiquitination via the lysosomal pathway. The degradation of Bcr-Abl consequently inhibits tyrosine phosphorylation of Bcr-Abl substrates and the downstream production of intracellular reactive oxygen species. Furthermore, PTP1B inhibition reduces cell viability and the IC(50) of the Bcr-Abl inhibitor imatinib mesylate. Degradation of Bcr-Abl via PTP1B inhibition is also observed in human CML cell lines K562 and LAMA-84. These results suggest that inhibition of PTP1B may be a useful strategy to explore in the development of novel therapeutic agents for the treatment of CML, particularly because host drugs currently used in CML such as imatinib focus on inhibiting the kinase activity of Bcr-Abl.  相似文献   

8.
The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory natural products, the MeOH extract of the dried sample of the Antarctic lichen Umbilicaria antarctica was found to exhibit significant inhibitory effect, and the bioassay-guided fractionation and purification afforded three related lichen metabolites 1-3. Compounds 1-3 were identified as gyrophoric acid (1), lecanoric acid (2), and methyl orsellinate (3) mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 3.6 ± 0.04 μM, 31 ± 2.7 μM, and 277 ± 8.6 μM, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compound 1 suggested that the compound inhibited PTP1B activity in a non-competitive manner.  相似文献   

9.
A series of our previously described BH3 peptide mimetics derived from Bim-BH3 domain core region were found to exhibit weak to potent PTP1B binding affinity and inhibitory activities via target-based drug screening. Among these compounds, a 12-aa Bim-BH3 core sequence peptide conjugated to palmitic acid (SM-6) displayed good PTP1B binding affinity (KD?=?8.38?nmol/L), inhibitory activity (IC50?=?1.20?μmol/L) and selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). Furthermore, SM-6 promoted HepG2 cell glucose uptake and inhibited the expression of PTP1B, indicating that SM-6 could improve the insulin resistance effect in the insulin-resistant HepG2 cell model. These results may indicate a new direction for the application of BH3 peptide mimetics and promising PTP1B peptide inhibitors could be designed and developed based on SM-6.  相似文献   

10.
Protein tyrosine phosphatase 1B (PTP1B) functions as major negative regulator of insulin and leptin signaling pathways. In view ofthis, PTP1B is an significant target for drug development against cancer, diabetes and obesity. The aim of the current study is toidentify PTP1B inhibitors by means of virtual screening with docking. 523,366 molecules from ZINC database have been screenedand based on DOCK grid scores and hydrogen bonding interactions five new potential inhibitors were identified. ZINC12502589,ZINC13213457, ZINC25721858, ZINC31392733 and ZINC04096400 were identified as potential lead molecules for inhibition ofPTP1B. The identified molecules were subjected to Lipinski''s rule of five parameters and found that they did not violate any rule.More specific analysis of pharmacological parameters may be scrutinized through a complete ADME/Tox evaluation. Pharmaalgorithm was used to Calculate ADME–Tox profiles for such molecules. In general, all the molecules presented advantages and aswell as disadvantages when compared to each other. No marked difference in health effects and toxicity profiles were observedamong these molecules.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) has been regarded as a target for the research and development of new drugs to treat type II diabetes and PTP1B inhibitors are potential lead compounds for this type of new drugs. A phytochemical investigation to obtain new PTP1B inhibitors resulted in the isolation of four new phloroglucinols, longistyliones A–D (14) from the aerial parts of Hypericum longistylum. The structures of 14 were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by comparing their experimental electronic circular dichroism (ECD) spectra with those calculated by the time-dependent density functional theory method. Compounds 14 possess a rare polycyclic phloroglucinol skeleton. The following biological evaluation revealed that all of the compounds showed PTP1B inhibitory effects. The further molecular docking studies indicated the strong interactions between these bioactive compounds with the PTP1B protein, which revealed the possible mechanism of PTP1B inhibition of bioactive compounds. All of the results implied that these compounds are potentially useful for the treatment of type II diabetes.  相似文献   

12.
LPA (lysophosphatidic acid) is a natural phospholipid that plays important roles in promoting cancer cell proliferation, invasion and metastases. We previously reported that LPA induces ovarian cancer cell dispersal and disruption of AJ (adherens junction) through the activation of SFK (Src family kinases). In this study, we have investigated the regulatory mechanisms during the early phase of LPA‐induced cell dispersal. An in vitro model of the ovarian cancer cell line SKOV3 for cell dispersal was used. LPA induces rapid AJ disruption by increasing the internalization of N‐cadherin‐β‐catenin. By using immunoprecipitations, LPA was shown to induce increased tyrosine phosphorylation of β‐catenin and alter the balance of β‐catenin‐bound SFK and PTP1B (phosphotyrosine phosphatase 1B). The altered balance of tyrosine kinase/phosphatase correlated with a concomitant disintegration of the β‐catenin‐α‐catenin, but not the β‐catenin—N‐cadherin complex. This disintegration of β‐catenin from α‐catenin and the cell dispersal caused by LPA can be rescued by blocking SFK activity with the chemical inhibitor, PP2. More importantly, PP2 also restores the level of PTP1B bound to β‐catenin. We propose that LPA signalling alters AJ stability by changing the dynamics of tyrosine kinase/phosphatase bound to AJ proteins. This work provides further understanding of the early signalling events regulating ovarian cancer cell dispersal and AJ disruption induced by LPA.  相似文献   

13.
Cell migration requires a highly coordinated interplay between specialized plasma membrane adhesion complexes and the cytoskeleton. Protein phosphorylation/dephosphorylation modifications regulate many aspects of the integrin-cytoskeleton interdependence, including their coupling, dynamics, and organization to support cell movement. The endoplasmic reticulum-bound protein tyrosine phosphatase PTP1B has been implicated as a regulator of cell adhesion and migration. Recent results from our laboratory shed light on potential mechanisms, such as Src/FAK signaling through Rho GTPases and integrin-cytoskeletal coupling.  相似文献   

14.
《Cell calcium》2016,59(6):617-627
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such ‘acidic calcium stores’ affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed “acidic store-operated calcium entry (aSOCE)”. aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis.  相似文献   

15.
Luis Vaca 《FEBS letters》1996,390(3):289-293
Utilizing the whole-cell configuration of the patch-clamp technique the effect of calmodulin (CaM) on thapsigargin-induced Ca2+ current has been studied. Addition of several concentrations of CaM to the patch pipette induced concentration-dependent inhibition of thapsigargin-induced Ca2+ current in bovine aortic endothelial cells. The effect of CaM was Ca2+ dependent and was not observed when the intracellular Ca2+ was buffered to 1 nM with EGTA. CaM produced two major effects on the thapsigargin-induced Ca2+ current. First CaM slow down activation of the current by thapsigargin from a control value of 16 ± 5 to 31 ± 6 s with 1 μM CaM in the pipette solution. The second effect of CaM was to reduce the current amplitude in a concentration-dependent manner. The inhibition of Ca2+ current was observed at the peak of the current and at the sustained current level. The reduction of current at the sustained level was observed 15–20 s after onset of the thapsigargin response. The half inhibitory concentration determined from these experiments was 0.1 μM. These results indicate that CaM can modulate thapsigargin-induced Ca2+ current in this endothelium, suggesting a possible role for CaM in the regulation of store-operated Ca2+ influx.  相似文献   

16.
Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator in insulin- and leptin-signaling cascades as well as a positive regulator in tumorigenesis, and much attention has been paid to PTP1B inhibitors as potential therapies for diabetes, obesity, and cancer. In the present study, the screening of a compound library of licorice flavonoids allowed for the discovery of several compounds, including licoagrone (3), licoagrodin (4), licoagroaurone (5), and isobavachalcone (6), as new PTP1B inhibitors. It was revealed that these compounds inhibit the activity of PTP1B in different modes and with different selectivities and that they exhibit different cellular activity in the insulin-signaling pathway. Glycybenzofuran (1), a competitive PTP1B inhibitor, showed both excellent inhibitory selectivity against PTP1B and cellular activity on the insulin-stimulated Akt phosphorylation level. The similarity of its action profiling in the insulin-signaling pathway suggested its potential as a new anti-insulin-resistant drug candidate.  相似文献   

17.
蛋白质酪氨酸磷酸酶1B(PTP1B)与2型糖尿病及肥胖的关系   总被引:3,自引:0,他引:3  
王辰  王沥  杨泽 《遗传》2004,26(6):941-946
蛋白质酪氨酸磷酸酶1B(PTP1B)是一种在体内广泛表达的胞内蛋白质酪氨酸磷酸酶,在调节胰岛素敏感性和能量代谢的过程中起着重要作用。通过抑制PTP1B可增加胰岛素和瘦蛋白(leptin)的活性, 为寻找2型糖尿病、肥胖的治疗提供了光明前景。  相似文献   

18.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin and leptin signaling. The development of small molecular inhibitors targeting PTP1B has been validated as a potential therapeutic strategy for Type 2 diabetes (T2D). In this work, we have identified a series of compounds containing dihydropyridine thione and particular chiral structure as novel PTP1B inhibitors. Among those, compound 4b showed moderate activity with IC50 value of 3.33 μM and meanwhile with good selectivity (>30-fold) against TCPTP. The further MOA study of PTP1B demonstrated that compounds 4b is a substrate-competitive inhibitor. The binding mode analysis suggested that compound 4b simultaneously occupies the active site and the second phosphotyrosine (pTyr) binding site of PTP1B. Furthermore, the cell viability assay of compound 4b showed tolerable cytotoxicity in L02 cells, thus 4b may be prospectively used to further in vivo study.  相似文献   

19.
When subjected to stimulation, cells from the vascular compartment show a spontaneous collapse of the plasma membrane phospholipid asymmetry and phosphatidylserine is exposed at the external leaflet. Thus, phosphatidylserine externalization is essential for normal hemostasis and phagocytosis. The mechanism governing the migration of phosphatidylserine to the exoplasmic leaflet is not yet fully understood. We have proposed that store-operated calcium entry (SOCE) constitutes a key step of this process. Here, interaction of [Ca(2+)](i), cAMP and cGMP pathways and phosphatidylserine exposure was examined in human megakaryocytic cells. The membrane permeable cAMP and cGMP analogues, pCPT-cAMP and pCPT-cGMP, enhanced the Ca(2+) signal induced by ionophore and SOCE. Responses to pCPT-cAMP and pCPT-cGMP were independent of protein kinase A, protein kinase G (PKG) or ERK pathways. Inhibition of small G-proteins reduced or abolished the increase of [Ca(2+)](i) induced by pCPT-cAMP or pCPT-cGMP, respectively. pCPT-cGMP but not pCPT-cAMP enhanced the ability of cells to expose phosphatidylserine. This effect was not prevented by the inhibition of PKG or small G-proteins. These results show the differential role of cyclic nucleotides in the Ca(2+)-dependent membrane remodeling. Hence, pCPT-cGMP is another regulatory element for the completion of SOCE-induced phosphatidylserine transmembrane redistribution in HEL cells through a mechanism implicating small G-proteins.  相似文献   

20.
Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号