首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uric acid (2,6,8 trioxopurine), the end product of purine metabolism in mammalian systems, has shown a wide range of antioxidant properties including scavenging of hydroxyl radical and singlet oxygen. In this study we show that in the presence of visible light, uric acid disrupted caprine alpha-2-macroglobulin (α2M) structure and antiproteolytic function in vitro. Proteinase cleaves the bait region of caprine inhibitor inducing major conformational changes and entrapping the enzyme within its molecular cage. In contrast to native α2M, modified antiproteinase lost half of its antiproteolytic potential within 4 hours of uric acid exposure. The changes in uv-absorption spectra of the treated protein suggested possible spatial rearrangement of subunits or conformational change. Analysis of the mechanism by which α2M was inactivated revealed that the process was dependent on generation of superoxide anion and hydrogen peroxide. Our findings suggest that antiproteolytic activity of caprine α2M could be compromised via oxidative modification mediated by uric acid. Moreover, low concentrations of α2M were found to stimulate superoxide production by some unknown mechanism.  相似文献   

2.
Caprine alpha-2-macroglobulin (alpha2M) is a broad-spectrum, homotetrameric proteinase inhibitor that can maximally bind a single molecule of proteinase. Inhibition of proteinases by caprine alpha2M results from a series of conformational changes that are initiated by the proteinase and results in physical sequestration of the proteinase within the closed cage-like structure of conformationally altered alpha2M. In a previous study, uric acid-generated superoxide anion was identified as one of the physiologically relevant inactivators of alpha2M S.A. Khan, F.H. Khan [Free. Radic. Res. 34 (2001) 113]. We now demonstrate that hypochlorous acid (HOCl) and, to lesser extent, hydrogen peroxide (H2O2) destroy the antiproteolytic potential of caprine alpha2M. At physiologically attainable concentration, we found that HOCl significantly compromised functional integrity of the inhibitor. High concentrations of H2O2 also partially diminished proteinase inhibitory capacity of alpha2M by a mechanism not involving formation of hydroxyl radicals. For hydrogen peroxide, catalase completely protected alpha2M activity while the ability to protect the inhibitor from HOCl-induced inactivation was limited by availability of albumin. Structure function analysis demonstrated that oxidized caprine inhibitor, unlike its human counterpart, retained its tetrameric configuration as well as its characteristic ability to undergo major conformational change upon trypsinization. It is proposed that inhibition of alpha2M activity may be due to oxidation of essential residues of the inhibitor and/or structural rearrangement of the subunits.  相似文献   

3.
Human alpha 2-macroglobulin (alpha 2M) rapidly lost functional and structural integrity in the course of a short-term incubation with either triggered neutrophils or eosinophils. In contrast to native alpha 2M, the modified antiproteinase was unable to bind neutrophil elastase or pancreatic elastase in a manner that restricted the enzymes' access to high molecular weight substrates. In addition to the complete loss of its antiproteolytic potential, the conformation of the dysfunctional inhibitor was radically altered and susceptible to further modification by exogenous proteinases as assessed by polyacrylamide gel electrophoresis. Analysis of the mechanism by which alpha 2M was inactivated by neutrophils revealed that the process was dependent on the generation of hypochlorous acid, an oxidant generated by the hydrogen peroxide-myeloperoxidase-chloride system. In contrast to the neutrophil, maximal eosinophil-dependent inactivation required the presence of physiologic concentrations of bromide and appeared to involve the generation of hypobromous acid. The ability of either hypochlorous acid or hypobromous acid to directly disrupt alpha 2M function and structure was confirmed under cell-free conditions. These results demonstrate that alpha 2M, an antiproteinase heretofore considered to be resistant to physiologic inactivation, could be destroyed by two populations of human phagocytes via oxidative modifications mediated by hypophalous acids.  相似文献   

4.
P A Roche  M D Moncino  S V Pizzo 《Biochemistry》1989,28(19):7629-7636
Treatment of the human plasma proteinase inhibitor alpha 2-macroglobulin (alpha 2M) with proteinase results in conformational changes in the inhibitor and subsequent activation and cleavage of the internal thiolester bonds of alpha 2M. Previous studies from this laboratory have shown that cross-linking the alpha 2M subunits with cis-dichlorodiammineplatinum(II) (cis-DDP) prevents the proteinase-induced conformational changes which lead to the activation and cleavage of the internal thiolester bonds of alpha 2M. In addition, cis-DDP treatment prevents the proteinase- or CH3NH2-induced conformational changes in alpha 2M which lead to a "slow" to "fast" change in nondenaturing polyacrylamide gel electrophoresis. In this paper, we demonstrate that treatment of alpha 2M with dithiobis(succinimidyl propionate) (DSP) also results in cross-linking of the subunits of alpha 2M with concomitant loss of proteinase inhibitory activity. Although proteinase is not inhibited by DSP-treated alpha 2M, bait region specific proteolysis of the alpha 2M subunits still occurs. Unlike cis-DDP-treated alpha 2M, however, incubation of DSP-treated alpha 2M with proteinase does not prevent the bait region cleavage dependent conformational changes which lead to activation and cleavage of the internal thiolester bonds in alpha 2M. On the other hand, cross-linking of alpha 2M with DSP does prevent the conformational changes which trigger receptor recognition site exposure following cleavage of the alpha 2M thiolester bonds by CH3NH2. These conformational changes, however, occur following incubation of the CH3NH2-treated protein with proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The elastase-inhibitory activity of alpha 1-antiproteinase is inactivated by hydroxyl radicals (.OH) generated by pulse radiolysis or by reaction of iron ions with H2O2 in the presence of superoxide or ascorbate. Uric acid did not protect alpha 1-antiproteinase against inactivation by .OH in pulse radiolysis experiments or in the superoxide/iron/H2O2 system, whereas it did in systems containing ascorbic acid. We propose that radicals formed by attack of .OH on uric acid are themselves able to inactivate alpha 1-antiproteinase, but that these uric acid radicals can be 'repaired' by ascorbic acid.  相似文献   

6.
Reactions of alpha(2)-macroglobulin (alpha(2)M) with primary amines (ammonium chloride, methylammonium chloride and ethylammonium chloride) or proteolytic enzymes (trypsin, chymotrypsin and thrombin) resulted in changes of the absorption, fluorescence and circular-dichroism spectra and of the sedimentation coefficient of the inhibitor. All physico-chemical changes caused by the inactivation of alpha(2)M by the amines were identical with, or highly similar to, those induced by the formation of the enzyme-inhibitor complexes. This suggests that similar conformational changes of the inhibitor occur in the two types of reactions. The frictional ratio, calculated from the increase in sedimentation coefficient, decreased from 1.67 for untreated alpha(2)M to 1.57 for the amine- or proteinase-treated inhibitor. This change is due to a decrease in either asymmetry or hydration of the protein, resulting in a slightly smaller hydrodynamic volume. The circular-dichroism analyses indicated that the reaction of alpha(2)M with either amines or proteinases is accompanied by a loss of the small amount (about 5%) of alpha-helix of the untreated protein. The changes of u.v. absorption and fluorescence suggested that about one out of the eight to ten tryptophan residues of each alpha(2)M subunit is buried as a result of the conformational change. All spectroscopic and hydrodynamic changes that were observed are compatible with a spatial rearrangement of the subunits of alpha(2)M, as implicated by the ;trap' hypothesis for the mechanism of inhibition of proteinases. However, a conformational change involving a decrease in the hydrodynamic volume of each subunit cannot be excluded.  相似文献   

7.
Different conformational states of human alpha 2-macroglobulin (alpha 2M) and pregnancy zone protein (PZP) were investigated following modifications of the functional sites, i.e. the 'bait' regions and the thiol esters, by use of chymotrypsin, methylamine and dinitrophenylthiocyanate. Gel electrophoresis, mAb (7H11D6 and alpha 1:1) and in vivo plasma clearance were used to describe different molecular states in the proteinase inhibitors. In alpha 2M, in which the thiol ester is broken by binding of methylamine and the 'trap' is closed, cyanylation of the liberated thiol group from the thiol ester modulates reopening of the 'trap' and the 'bait' regions become available for cleavage again. The trapping of proteinases in the cyanylated derivative indicates that the trap functions as in native alpha 2M. In contrast, cyanylation has no effect on proteinase-treated alpha 2M. As demonstrated by binding to mAb, the methylamine and dinitrophenylthiocyanate-treated alpha 2M exposes the receptor-recognition site, but the derivative is not cleared from the circulation in mice. The trap is not functional in PZP. In native PZP and PZP treated with methylamine, the conformational states seem similar. The receptor-recognition sites are not exposed and removal from the circulation in vivo is not seen for these as for the PZP-chymotrypsin complex. Tetramers are only formed when proteinases can be covalently bound to the PZP. Conformational changes are not detected in PZP derivatives in which the thiol ester is treated with methylamine and dinitrophenylthiocyanate. The results suggest that the conformational changes in alpha 2M are generated by mechanisms different to these in PZP. The key structure gearing the conformational changes in alpha 2M is the thiol ester, by which the events 'trapping' and exposure of the receptor-recognition site can be separated. In PZP, the crucial step for the conformational changes is the cleavage of the 'bait' region, since cleavage of the thiol ester does not lead to any detectable conformational changes by the methods used.  相似文献   

8.
To gain insight into the mechanism by which the alpha(M)I-domain of integrin alpha(M)beta(2) interacts with multiple and unrelated ligands, the identity of the neutrophil inhibitory factor (NIF) recognition site was sought. A systematic strategy in which individual amino acid residues within three previously implicated segments were changed to those in the alpha(L)I-domain, which is structurally very similar but does not bind NIF, was implemented. The capacity of the resulting mutants, expressed as glutathione S-transferase fusion proteins, to recognize NIF was assessed. These analyses ultimately identified Asp(149), Arg(151), Gly(207), Tyr(252), and Glu(258) as critical for NIF binding. Cation binding, a function of the metal ion-dependent adhesion site (MIDAS) motif, was assessed by terbium luminescence to evaluate conformational perturbations induced by the mutations. All five mutants bound terbium with unaltered affinities. When the five residues were inserted into the alpha(L)I-domain, the chimera bound NIF with high affinity. Another ligand of alpha(M)beta(2), C3bi, which is known to use the same segments of the alpha(M)I-domain in engaging the receptor, failed to bind to the chimeric alpha(L)I-domain. Thus, the alpha(M)I-domain appears to present a mosaic of exposed amino acids within surface loops on its MIDAS face, and different ligands interact with different residues to attain high affinity binding.  相似文献   

9.
Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan’s ability to reduce uric-acid-induced COX-2 elevation.  相似文献   

10.
The glycosylphosphatidylinositol-linked urokinase-type plasminogen activator receptor (uPAR) interacts with the heterodimer cell adhesion molecules integrins to modulate cell adhesion and migration. Devoid of a cytoplasmic domain, uPAR triggers intracellular signaling via its associated molecules that contain cytoplasmic domains. Interestingly, uPAR changes the ectodomain conformation of one of its partner molecules, integrin alpha(5)beta(1), and elicits cytoplasmic signaling. The separation or reorientation of integrin transmembrane domains and cytoplasmic tails are required for integrin outside-in signaling. However, there is a lack of direct evidence showing these conformational changes of an integrin that interacts with uPAR. In this investigation we used reporter monoclonal antibodies and fluorescence resonance energy transfer analyses to show conformational changes in the alpha(M)beta(2) headpiece and reorientation of its transmembrane domains when alpha(M)beta(2) interacts with uPAR.  相似文献   

11.
The conformational changes around the thioester-bond region of human or bovine alpha 2M (alpha 2-macroglobulin) on reaction with methylamine or trypsin were studied with the probe AEDANS [N-(acetylaminoethyl)-8-naphthylamine-1-sulphonic acid], bound to the liberated thiol groups. The binding affected the fluorescence emission and lifetime of the probe in a manner indicating that the thioester-bond region is partially buried in all forms of the inhibitor. In human alpha 2M these effects were greater for the trypsin-treated than for the methylamine-treated inhibitor, which both have undergone similar, major, conformational changes. This difference may thus be due to a close proximity of the thioester region to the bound proteinase. Reaction of trypsin with thiol-labelled methylamine-treated bovine alpha 2M, which retains a near-native conformation and inhibitory activity, indicated that the major conformational change accompanying the binding of proteinases involves transfer of the thioester-bond region to a more polar environment without increasing the exposure of this region at the surface of the protein. Labelling of the transglutaminase cross-linking site of human alpha 2M with dansylcadaverine [N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulphonamide] suggested that this site is in moderately hydrophobic surroundings. Reaction of the labelled inhibitor with methylamine or trypsin produced fluorescence changes consistent with further burial of the cross-linking site. These changes were more pronounced for trypsin-treated than for methylamine-treated alpha 2M, presumably an effect of the cleavage of the adjacent 'bait' region. Solvent perturbation of the u.v. absorption and iodide quenching of the tryptophan fluorescence of human alpha 2M showed that one or two tryptophan residues in each alpha 2M monomer are buried on reaction with methylamine or trypsin, with no discernible change in the exposure of tyrosine residues. Together, these results indicate an extensive conformational change of alpha 2M on reaction with amines or proteinases and are consistent with several aspects of a recently proposed model of alpha 2M structure [Feldman, Gonias & Pizzo (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700-5704].  相似文献   

12.
I Bj?rk  T Lindblom  P Lindahl 《Biochemistry》1985,24(11):2653-2660
Cleavage of the thio ester bonds of human alpha2-macroglobulin (alpha 2M) by methylamine leads to an extensive conformational change and to inactivation of the inhibitor. In contrast, cleavage of these bonds in bovine alpha 2M only minimally perturbs the hydrodynamic volume of the protein [Dangott, L. J., & Cunningham, L. W. (1982) Biochem. Biophys. Res. Commun. 107, 1243-1251], as well as its spectroscopic properties, as analyzed by ultraviolet difference spectroscopy, circular dichroism, and fluorescence in this work. A conformational change analogous to that undergone by human alpha 2M thus does not occur in the bovine inhibitor. However, changes of several functional properties of bovine alpha 2M are induced by the amine. The apparent stoichiometry of inhibition of trypsin thus is reduced from about 1.2 to about 0.7 mol of enzyme/mol of inhibitor. In spite of this decrease, the interaction with the proteinase induces similar conformational changes in methylamine-treated alpha 2M as in intact alpha 2M, as revealed by spectroscopic analyses, indicating that the mode of binding of the proteinase to the inhibitor is essentially unperturbed by thio ester bond cleavage. The reaction with methylamine also greatly increases the sensitivity of bovine alpha 2M to proteolysis by trypsin at sites other than the "bait" region. Moreover, the second-order rate constant for the reaction with thrombin is reduced by about 10-fold. These results indicate that the thio ester bonds of bovine alpha 2M, although not required per se for the binding of proteinases, nevertheless are responsible for maintaining certain structural features of the inhibitor that are of importance for full activity.  相似文献   

13.
alpha 2-Macroglobulin (alpha 2M) is an abundant glycoprotein with the intrinsic capacity for capturing diverse proteins for rapid delivery into cells. After internalization by the receptor- mediated endocytosis, alpha 2M-protein complexes were rapidly degraded in the endolysosome system. Although this is an important pathway for clearance of both alpha 2M and biological targets, little is known about the nature of alpha 2M degradation in the endolysosome system. To investigate the possible involvement of intracellular aspartic proteinases in the disruption of structural and functional integrity of alpha 2M in the endolysosome system, we examined the capacity of alpha 2M for interacting with cathepsin E and cathepsin D under acidic conditions and the nature of its degradation. alpha 2M was efficiently associated with cathepsin E under acidic conditions to form noncovalent complexes and rapidly degraded through the generation of three major proteins with apparent molecular masses of 90, 85 and 30 kDa. Parallel with this reaction, alpha 2M resulted in the rapid loss of its antiproteolytic activity. Analysis of the N-terminal amino-acid sequences of these proteins revealed that alpha 2M was selectively cleaved at the Phe811-Leu812 bond in about 100mer downstream of the bait region. In contrast, little change was observed for alpha 2M treated by cathepsin D under the same conditions. Together, the synthetic SPAFLA peptide corresponding to the Ser808-Ala813 sequence of human alpha 2M, which contains the cathepsin E-cleavage site, was selectively cleaved by cathepsin E, but not cathepsin D. These results suggest the possible involvement of cathepsin E in disruption of the structural and functional integrity of alpha 2M in the endolysosome system.  相似文献   

14.
The human protease inhibitor alpha 2-macroglobulin (alpha 2 M) is inactivated by reaction with methylamine. The site of reaction is a protein functional group having the properties of a thiol ester. To ascertain the relationship between thiol ester cleavage and protein inactivation, the rates of methylamine incorporation and thiol release were measured. As expected for a concerted reaction of a nucleophile with a thiol ester, the rates were identical. Furthermore, both rates were first order with respect to methylamine and second order overall. The methylamine inactivation of alpha 2M was determined by measuring the loss of total protease-binding capacity. This rate was slower than the thiol ester cleavage and had a substantial initial lag. However, the inactivation followed the same time course as a conformational change in alpha 2M that was measured by fluorescent dye binding, ultraviolet difference spectroscopy, and limited proteolysis. Thus, the methylamine inactivation of alpha 2M is a sequential two-step process where thiol ester cleavage is followed by a protein conformational change. It is the latter that results in the loss of total protease-binding capacity. A second assay was used to monitor the effect of methylamine on alpha 2M. The assay measures the fraction of alpha 2M-bound protease (less than 50%) that is resistant to inactivation by 100 microM soybean trypsin inhibitor. In contrast to the total protease-binding capacity, this subclass disappeared with a rate coincident with methylamine cleavage of the thiol ester. alpha 2M-bound protease that is resistant to a high soybean trypsin inhibitor concentration may reflect the fraction of the protease randomly cross-linked to alpha 2M. Both the thiol ester cleavage and the protein conformational change rates were dependent on methylamine concentration. However, the thiol ester cleavage depended on methylamine acting as a nucleophile, while the conformational change was accelerated by the ionic strength of methylamine. Other salts and buffers that do not cleave the thiol ester increased the rate of the conformational change. A detailed kinetic analysis and model of the methylamine reaction with alpha 2M is presented. The methylamine reaction was exploited to study the mechanism of protease binding by alpha 2M. At low ionic strength, the protein conformational change was considerably slower than thiol ester cleavage by methylamine. Thus, at some time points, a substantial fraction of the alpha 2M had all four thiol esters cleaved, yet had not undergone the conformational change. This fraction (approximately 50%) retained full protease-binding capacity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The interaction of thrombin with alpha 2-macroglobulin (alpha 2M) was characterized by monitoring conformational changes and measuring the increase of free sulfhydryl groups during the reaction. Under experimental conditions where [thrombin] greater than [alpha 2M], the conformational change, measured by increases in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate, and thiol group appearance displayed biphasic kinetics. The initial rapid phase results in the formation of a stable complex, the appearance of two sulfhydryl groups, the cleavage of approximately half of the Mr 180 000 subunits, and a conformational change that is not as extensive as that which occurs with trypsin. The slower phase is associated with the appearance of two additional sulfhydryl groups, increased cleavage of the Mr 180 000 subunit, and additional conformational changes. The available evidence suggests that the slow phase results from hydrolysis of the Mr 180 000 subunit(s) due to proteolysis of the alpha 2M-thrombin complex by free thrombin. Experiments with 125I-thrombin document the binding of 1 mol of thrombin/mol of alpha 2M that is not dissociated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the complex. At higher ratios of thrombin to alpha 2M, a second mole of thrombin will reversibly associate with the 1:1 alpha 2M-thrombin complex. Under conditions where [thrombin] less than [alpha 2M], biphasic kinetics were not observed, and the conformational change, sulfhydryl appearance, and hydrolysis of the Mr 180 000 subunit were found to follow second-order kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Integrin activation has been postulated to occur in part via conformational changes in the I domain of the beta subunit (the betaI domain), especially near the F-alpha(7) loop, in response to "inside-out" signaling. However, direct evidence for a role of the F-alpha(7) loop in ligand binding and activity modulation is still lacking. Here, we report our finding that the F-alpha(7) loop (residues 344-358) within the beta(2)I domain has dual functions in ligand binding by alpha(M)beta(2). On the one hand, it supports intercellular adhesion molecule 1 (ICAM-1) binding to alpha(M)beta(2) directly as part of a recognition interface formed by five noncontiguous segments (Pro(192)-Glu(197), Asn(213)-Glu(220), Leu(225)-Leu(230), Ser(324)-Thr(329), and Glu(344)-Asp(348)) on the apex of the beta(2)I domain. On the other hand, it controls the open and closed conformation of the alpha(M)beta(2) receptor, thereby indirectly affecting alpha(M)beta(2) binding to other ligands. Switching the five constituent sequences of the ICAM-1-binding site within the beta(2)I domain to their beta(1) counterparts destroyed ICAM-1 binding but had no effect on the gross conformations of the receptor. Of the five ICAM-1 binding-defective mutants, four had normal or even stronger interaction with Fg and C3bi, as reported in our previous study. Synthetic peptides derived from the identified site inhibited alpha(M)beta(2)-ICAM-1 interaction and supported direct binding to ICAM-1. Most importantly, perturbation of the F-alpha(7) loop caused conformational changes within the beta(2)I domain, which was further propagated to other regions of alpha(M)beta(2). Altogether, our data demonstrate that inside-out signaling could modulate ligand binding directly by changing the ligand-binding pocket per se and/or indirectly by inducing multiple conformational changes within the receptor.  相似文献   

17.
Conformational alterations occurring in bovine alpha 2-macroglobulin (alpha 2M) resulting from proteolysis and nucleophilic modification have been monitored by UV difference spectra, circular dichroism, and changes in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate (TNS) and bis(8-anilino-1-naphthalenesulfonate) (Bis-ANS). The results of this study indicate that these two dyes appear capable of differentiating between conformational changes induced by proteolysis and those induced by methylamine treatment. It appears that TNS is a sensitive probe for monitoring protease-induced but not methylamine-induced conformational changes in bovine alpha 2M. Bis-ANS, on the other hand, appears suitable for monitoring conformational changes induced by methylamine treatment or proteolysis of the molecule and was used as a probe to monitor the kinetics of the conformational change induced by methylamine treatment. It was found that the conformational change did not occur simultaneously with cleavage of the thiol ester bonds by the nucleophile, measured by titration of free sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoate). The data are consistent with a model in which initial nucleophilic attack results in exposure of sulfhydryl groups, resulting in a conformational change measured by an increase in fluorescence. This event is followed by a unimolecular step representing a conformational change in the protein that results in a further increase in the fluorescence signal. The second-order rate constant for hydrolysis of the thiol ester bonds was determined to be 3.4 +/- 1.0 M-1 s-1, while the rate constant for the conformational change was (4.4 +/- 0.8) X 10(-4) s-1.  相似文献   

18.
Proteolysis of human alpha 2-macroglobulin (alpha 2M) in the bait region is the prerequisite and necessary trigger for the trapping of the proteinase by a massive conformational change of alpha 2M. This labilization of the native conformation of alpha 2M is mediated by activation of the internal thiolesters, but the underlying mechanism is unknown. We now describe observations on proteolysis of human alpha 2M without concomitant hydrolysis of the internal thiolesters or conformational change. This proteolysis was obtained with a novel bacterial proteinase we recently used to isolate the receptor-binding domain from alpha 2M (Van Leuven, F., Marynen, P., Sottrup-Jensen, L., Cassiman, J.-J., and Van Den Berghe, H. (1986) J. Biol. Chem. 261, 11369-11373). This proteinase is not inhibited by alpha 2M, and therefore it was possible to study its effect on native alpha 2M at pH 4.5, conditions used previously to produce the receptor-binding domain (Van Leuven, F., Marynen, P., Sottrup-Jensen, L., Cassiman, J.-J., and Van Den Berghe, H. (1986) J. Biol. Chem. 261, 11369-11373). The major observations are that despite extensive proteolysis, alpha 2M largely retained its native conformation as shown by rate electrophoresis, the absence of binding of monoclonal antibody F2B2, and the incorporation of [14C]methylamine into a 145-kDa fragment of alpha 2M. Moreover, the derivative still bound trypsin to 88% of control values. Treatment of the derivative with trypsin or methylamine produced the conformational change as with intact alpha 2M, and concomitantly released the receptor-binding domain. This indicated that proteolysis at Lys1313-Glu also proceeded in native alpha 2M. At least one more major proteolysis site was deduced from the observation of a 27-kDa heat-induced fragment, the 145-kDa [14C]methylamine-labeled fragment, and from the presence of the 20-kDa receptor-binding domain. These results demonstrate indirectly the particular relation of the bait region to the internal thiolesters and illustrate further the domain-structure of alpha 2M and the expression of the receptor-recognition site by activation of the internal thiolesters.  相似文献   

19.
Alpha 2-Macroglobulin (alpha 2M) is a plasma proteinase inhibitor that binds up to 2 mole of proteinase per mole of inhibitor. Proteinase binding or reaction with small primary amines causes a major conformational change in alpha 2M. As a result of this conformational change, a new epitope recognized by monoclonal antibody 7H11D6 is exposed. The association of alpha 2M-proteinase or alpha 2M-methylamine with alpha 2M cellular receptors is prevented by 7H11D6. In this investigation, the binding of 7H11D6 to alpha 2M was studied by electron microscopy. 7H11D6 bound to alpha 2M-methylamine and alpha 2M-trypsin but not to native alpha 2M. The structure of alpha 2M after conformational change resembled the letter "H." 7H11D6 epitopes were identified near the apices of the four arms in the alpha 2M "H" structure. 7H11D6 that was adducted to colloidal gold (7HAu) retained the specificity of the free antibody (binding to alpha 2M-trypsin but not to native alpha 2M). alpha 2M conformational change intermediates prepared by sequential reaction with a protein crosslinker and trypsin also bound 7HAu. These results suggest that a complete alpha 2M conformational change is not necessary for 7H11D6 epitope exposure and may not be required for receptor recognition. 7HAu was used to isolate a preparation consisting primarily of binary alpha 2M-trypsin (1 mole trypsin per mole alpha 2M instead of 2). Structures resembling the letter "H" were most common; however, each field showed some atypical molecules with arms that were compacted instead of thin and elongated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Native tetrameric alpha 2-macroglobulin molecules (alpha 2M) can be converted into a population of dimers by incubation with various divalent cations such as Zn, Cd, Mg, Cu, Ni, Co. This dissociation is completed within 30 min at 37 degrees C. These dimers have a characteristic shape and a size of about 16 X 8 nm, and appear to be the half of the native alpha 2M molecule which has a clear tetrameric structure as seen in the electron microscope. At room temperature or below, dimers obtained with 5 to 100 mM Zn++ can reassociate in long linear polymers which display a regular chain-like arrangement and a helical periodicity. The structural characteristics of this polymer are described. The trypsin inhibitory capacity of Zn++-treated alpha 2M has been studied in an attempt to correlate its Zn++-induced conformational changes with its functional modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号