首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jasmonates are a group of small lipids produced in plants and function as stress hormones. They are selectively cytotoxic against cancer cells. Methyl jasmonate (MJ), one of the naturally occurring jasmonates, has direct mitochondriotoxic effects, strongly suggesting that mitochondria are target organelles of jasmonates. We have previously shown that jasmonates are cytotoxic to two human parasites -Schistosoma mansoni and Plasmodium falciparum. Both the cancer cells and the parasites mentioned above possess mitochondria. The present work aimed to examine whether jasmonates are able to damage cells lacking mitochondria, e.g., some unicellular human parasitic flagellates. We found that MJ induced death of the amitochondriate Trichomonas vaginalis parasites. MJ caused fragmentation and condensation of the DNA of T. vaginalis, resembling phenomena associated with apoptotic death. However, DNA laddering, a sub-G(1) cell cycle stage peak and caspase-3 activation were not observed. Thus, MJ-induced T. vaginalis cell death appears to be non-apoptotic. We found that MJ induced cell cycle block at the G(2)/M phase in T. vaginalis, similar to the effect of metronidazole. We examined the influence of MJ on the bioenergetic pathways of T. vaginalis, and found that depletion of ATP did not precede death of the parasites, but rather reflected it. Nevertheless, 2-deoxy-d-glucose, a glycolysis blocker, was synergistic with MJ in causing death of T. vaginalis cells, suggesting that MJ does perturb the bioenergetic homeostasis of the parasites. Finally, MJ was found to be cytotoxic towards a metronidazole-resistant strain of T. vaginalis (ATCC 50143), suggesting that it may be effective for the treatment of nitroimidazole-refractory trichomoniasis. In conclusion, MJ was found to exhibit mitochondria-independent cytotoxicity and presents a potentially novel agent against T. vaginalis.  相似文献   

2.
Trichomonas vaginalis is an important human parasite of the urogenital tract. Jasmonates are a group of small lipids that are produced in plants and function as stress hormones. Naturally occurring methyl jasmonate (MJ) has been used to treat several types of cancer cells and it is cytotoxic to protistan parasites. It has been suggested that mitochondria are the target organelles of jasmonates. Here, we tested this drug against T. vaginalis. Although metronidazole has been the drug of choice for trichomoniasis, side effects from this treatment are common, and nausea and dizziness have been reported in up to 12% of patients. In addition, there has been increased recognition of resistance to metronidazole. We demonstrate here using flow cytometry, JC-1 and scanning and transmission electron microscopy that MJ induced the cell death of T. vaginalis parasites. Our results are discussed with previous findings published by others.  相似文献   

3.
Jasmonates are plant stress hormones that induce suppression of proliferation and death in cancer cells, while being selectively inactive towards non-transformed cells. Jasmonates can overcome apoptotic blocks and exert cytotoxic effects on drug-resistant cells expressing p53 mutations. Jasmonates induce a rapid depletion of ATP in cancer cells. Indeed, this steep drop occurs when no signs of cell death are detectable yet. Experiments using modulators of ATP synthesis via glycolysis or oxidative phosphorylation suggest that the latter is the pathway suppressed by jasmonates. Consequently, the direct effects of jasmonates on mitochondria were evaluated. Jasmonates induced cytochrome c release and swelling in mitochondria isolated from cancer cells but not from normal ones. Thus, the selectivity of jasmonates against cancer cells is rooted at the mitochondrial level, and probably exploits differences between mitochondria from normal versus cancer cells. These findings position jasmonates as promising anti-cancer drugs acting via energetic depletion in neoplastic cells.  相似文献   

4.
Jasmonates act as signal transduction intermediates when plants are subjected to environmental stresses such as UV radiation, osmotic shock and heat. In the past few years several groups have reported that jasmonates exhibit anti-cancer activity in vitro and in vivo and induce growth inhibition in cancer cells, while leaving the non-transformed cells intact. Recently, jasmonates were also discovered to have cytotoxic effects towards metastatic melanoma both in vitro and in vivo.Three mechanisms of action have been proposed to explain this anti-cancer activity. The bio-energetic mechanism – jasmonates induce severe ATP depletion in cancer cells via mitochondrial perturbation. Furthermore, methyl jasmonate (MJ) has the ability to detach hexokinase from the mitochondria. Second, jasmonates induce re-differentiation in human myeloid leukemia cells via mitogen-activated protein kinase (MAPK) activity and were found to act similar to the cytokinin isopentenyladenine (IPA). Third, jasmonates induce apoptosis in lung carcinoma cells via the generation of hydrogen peroxide, and pro-apoptotic proteins of the Bcl-2 family.Combination of MJ with the glycolysis inhibitor 2-deoxy-d-glucose (2DG) and with four conventional chemotherapeutic drugs resulted in super-additive cytotoxic effects on several types of cancer cells. Finally, jasmonates have the ability to induce death in spite of drug-resistance conferred by either p53 mutation or P-glycoprotein (P-gp) over-expression.In summary, the jasmonates are anti-cancer agents that exhibit selective cytotoxicity towards cancer cells, and thus present hope for the development of cancer therapeutics.  相似文献   

5.
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.  相似文献   

6.
The exoerythrocytic stage of Plasmodium falciparum has remained a difficult phase of the parasite life-cycle to study. The host and tissue specificity of the parasite requires the experimental infection of humans or non-human primates and subsequent surgical recovery of parasite-infected liver tissue to analyze this stage of the parasites development. This type of study is impossible in humans due to obvious ethical considerations and the cost and complexity in working with primate models has precluded their use for extensive studies of the exoerythrocytic stage. In this study we assessed, for the first time, the use of transgenic, chimeric mice containing functioning human hepatocytes as an alternative for modeling the in vivo interaction of P. falciparum parasites and human hepatocytes. Infection of these mice with P. falciparum sporozoites produced morphologically and antigenically mature liver stage schizonts containing merozoites capable of invading human red blood cells. Additionally, using microdissection, highly enriched P. falciparum liver stage parasites essentially free of hepatocyte contamination, were recovered for molecular studies. Our results establish a stable murine model for P. falciparum that will have a wide utility for assessing the biology of the parasite, potential anti-malarial chemotherapeutic agents and vaccine design.  相似文献   

7.
茉莉酸类物质(JAs)是新确认的一类广泛存在于植物体内的内源激素,在植物的生长发育、应激反应和次生代谢过程中起着重要的调控作用。该文主要概述了植物中茉莉酸类物质的生物合成途径、各关键酶的生理作用及其在植物次生代谢工程等方面的研究进展,并探讨了茉莉酸类物质的潜在应用价值。  相似文献   

8.
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.  相似文献   

9.
10.
We have investigated the evolution of Plasmodium parasites by analyzing DNA sequences of several genes. We reach the following conclusions: (1) The four human parasites, P. falciparum, P. malariae, P. ovale, and P. vivax are very remotely related to each other, so that their evolutionary divergence predates the origin of the hominids; several of these parasites became associated with the human lineage by lateral transfer from other hosts. (2) P. falciparum diverged from P. reichenowi about 8 million years ago, consistently with the time of divergence of the human lineage from the apes; a parsimonious inference is that falciparum has been associated with humans since the origin of the hominids. (3) P. malariae is genetically indistinguishable from P. brasilianum, a parasite of New World monkeys; and, similarly. (4) P. vivax is genetically indistinguishable from the New World monkey parasite P. simium. We infer in each of these two cases a very recent lateral transfer between the human and monkey hosts, and explore alternative hypotheses about the direction of the transfer. We have also investigated the population structure of P. falciparum by analyzing 10 genes and conclude that the extant world populations of this parasite have evolved from a single strain within the last several thousand years. The extensive polymorphisms observed in the highly repetitive central region of the Csp gene, as well as the apparently very divergent two classes of alleles at the Msa-1 gene, are consistent with this conclusion.  相似文献   

11.
植物内源茉莉酸类物质的生物合成途径及其生物学意义   总被引:7,自引:0,他引:7  
蒋科技  皮妍  侯嵘  唐克轩 《植物学报》2010,45(2):137-148
茉莉酸类物质(JAs)是新确认的一类广泛存在于植物体内的内源激素, 在植物的生长发育、应激反应和次生代谢过程中起着重要的调控作用。该文主要概述了植物中茉莉酸类物质的生物合成途径、各关键酶的生理作用及其在植物次生代谢工程等方面的研究进展, 并探讨了茉莉酸类物质的潜在应用价值。  相似文献   

12.
The within-host and between-host dynamics of malaria are linked in myriad ways, but most obviously by gametocytes, the parasite blood forms transmissible from human to mosquito. Gametocyte dynamics depend on those of non-transmissible blood forms, which stimulate immune responses, impeding transmission as well as within-host parasite densities. These dynamics can, in turn, influence antigenic diversity and recombination between genetically distinct parasites. Here, we embed a differential-equation model of parasite-immune system interactions within each of the individual humans represented in a discrete-event model of Plasmodium falciparum transmission, and examine the effects of human population turnover, parasite antigenic diversity, recombination, and gametocyte production on the dynamics of malaria. Our results indicate that the local persistence of P. falciparum increases with turnover in the human population and antigenic diversity in the parasite, particularly in combination, and that antigenic diversity arising from meiotic recombination in the parasite has complex differential effects on the persistence of founder and progeny genotypes. We also find that reductions in the duration of individual human infectivity to mosquitoes, even if universal, produce population-level effects only if near-absolute, and that, in competition, the persistence and prevalence of parasite genotypes with gametocyte production concordant with data exceed those of genotypes with higher gametocyte production. This new, integrated approach provides a framework for investigating relationships between pathogen dynamics within an individual host and pathogen dynamics within interacting host and vector populations.  相似文献   

13.
Malaria remains a public health problem of enormous magnitude, affecting over 500 million people every year. Lack of success in the past in the development of new drug/vaccines has mainly been attributed to poor understanding of the functions of different parasite proteins. Recently, RNA interference (RNAi) has emerged as a simple and incisive technique to study gene functions in a variety of organisms. In this study, we report the results of RNAi by double-stranded RNA of cysteine protease genes (falcipain-1 and -2) in the malaria parasite, Plasmodium falciparum. Using RNAi directed towards falcipain genes, we demonstrate that blocking the expression of these genes results in severe morphological abnormalities in parasites, inhibition of parasite growth in vitro and substantial accumulation of haemoglobin in the parasite. The inhibitory effects produced by falcipain double-stranded (ds)RNAs are reminiscent of the effects observed upon administering E-64, a cysteine protease inhibitor. The parasites treated with falcipain's dsRNAs also show marked reduction in the levels of corresponding endogenous falcipain mRNAs. We also demonstrate that dsRNAs of falcipains are broken into short interference RNAs approximately 25 nucleotides in size, a characteristic of RNAi, which in turn activates sequence-specific nuclease activity in the malaria parasites. These results thus provide more evidence for the existence of RNAi in P. falciparum and also suggest possibilities for using RNAi as an effective tool to determine the functions of the genes identified from the P. falciparum genome sequencing project.  相似文献   

14.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   

15.
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.  相似文献   

16.
The protozoan parasite Plasmodium falciparum, responsible for the most severe form of malaria, is able to sequester from peripheral circulation during infection. The asexual stage parasites sequester by binding to endothelial cell receptors in the microvasculature of various organs. P. falciparum gametocytes, the developmental stages responsible for parasite transmission from humans to Anopheles mosquitoes, also spend the almost ten days necessary for their maturation sequestered away from the peripheral circulation before they are released in blood mainstream. In contrast to those of asexual parasites, the mechanisms and cellular interactions responsible for immature gametocyte sequestration are largely unexplored, and controversial evidence has been produced so far on this matter. Here we present a systematic comparison of cell binding properties of asexual stages and immature and mature gametocytes from the reference P. falciparum clone 3D7 and from a patient parasite isolate on a panel of human endothelial cells from different tissues. This analysis includes assays on human bone marrow derived endothelial cell lines (HBMEC), as this tissue has been proposed as a major site of gametocyte maturation. Our results clearly demonstrate that cell adhesion of asexual stage parasites is consistently more efficient than that, virtually undetectable of immature gametocytes, irrespectively of the endothelial cell lines used and of parasite genotypes. Importantly, immature gametocytes of both lines tested here do not show a higher binding efficiency compared to asexual stages on bone marrow derived endothelial cells, unlike previously reported in the only study on this issue. This indicates that gametocyte-host interactions in this tissue are unlikely to be mediated by the same adhesion processes to specific endothelial receptors as seen with asexual forms.  相似文献   

17.
Most human malaria deaths are caused by blood-stage Plasmodium falciparum parasites. Cerebral malaria, the most life-threatening complication of the disease, is characterised by an accumulation of Plasmodium falciparum infected red blood cells (iRBC) at pigmented trophozoite stage in the microvasculature of the brain(2-4). This microvessel obstruction (sequestration) leads to acidosis, hypoxia and harmful inflammatory cytokines (reviewed in (5)). Sequestration is also found in most microvascular tissues of the human body(2, 3). The mechanism by which iRBC attach to the blood vessel walls is still poorly understood. The immortalized Human Brain microvascular Endothelial Cell line (HBEC-5i) has been used as an in vitro model of the blood-brain barrier(6). However, Plasmodium falciparum iRBC attach only poorly to HBEC-5i in vitro, unlike the dense sequestration that occurs in cerebral malaria cases. We therefore developed a panning assay to select (enrich) various P. falciparum strains for adhesion to HBEC-5i in order to obtain populations of high-binding parasites, more representative of what occurs in vivo. A sample of a parasite culture (mixture of iRBC and uninfected RBC) at the pigmented trophozoite stage is washed and incubated on a layer of HBEC-5i grown on a Petri dish. After incubation, the dish is gently washed free from uRBC and unbound iRBC. Fresh uRBC are added to the few iRBC attached to HBEC-5i and incubated overnight. As schizont stage parasites burst, merozoites reinvade RBC and these ring stage parasites are harvested the following day. Parasites are cultured until enough material is obtained (typically 2 to 4 weeks) and a new round of selection can be performed. Depending on the P. falciparum strain, 4 to 7 rounds of selection are needed in order to get a population where most parasites bind to HBEC-5i. The binding phenotype is progressively lost after a few weeks, indicating a switch in variant surface antigen gene expression, thus regular selection on HBEC-5i is required to maintain the phenotype. In summary, we developed a selection assay rendering P. falciparum parasites a more "cerebral malaria adhesive" phenotype. We were able to select 3 out of 4 P. falciparum strains on HBEC-5i. This assay has also successfully been used to select parasites for binding to human dermal and pulmonary endothelial cells. Importantly, this method can be used to select tissue-specific parasite populations in order to identify candidate parasite ligands for binding to brain endothelium. Moreover, this assay can be used to screen for putative anti-sequestration drugs(7).  相似文献   

18.
Despite substantial work, the phylogeny of malaria parasites remains debated. The matter is complicated by concerns about patterns of evolution in potentially strongly selected genes as well as the extreme AT bias of some Plasmodium genomes. Particularly contentious has been the position of the most virulent human parasite Plasmodium falciparum, whether grouped with avian parasites or within a larger clade of mammalian parasites. Here, we study 3 classes of rare genomic changes, as well as the sequences of mitochondrial ribosomal RNA (rRNA) genes. We report 3 lines of support for a clade of mammalian parasites: 1) we find no instances of spliceosomal intron loss in a hypothetical ancestor of P. falciparum and the avian parasite Plasmodium gallinaceum, suggesting against a close relationship between those species; 2) we find 4 genomic mitochondrial indels supporting a mammalian clade, but none grouping P. falciparum with avian parasites; and 3) slowly evolving mitochondrial rRNA sequences support a mammalian parasite clade with 100% posterior probability. We further report a large deletion in the mitochondrial large subunit rRNA gene, which suggests a subclade including both African and Asian parasites within the clade of closely related primate malarias. This contrasts with previous studies that provided strong support for separate Asian and African clades, and reduces certainty about the historical and geographic origins of Plasmodium vivax. Finally, we find a lack of synapomorphic gene losses, suggesting a low rate of ancestral gene loss in Plasmodium.  相似文献   

19.
Examination of nucleotide diversity in 106 mitochondrial genomes of the most geographically widespread human malaria parasite, Plasmodium vivax, revealed a level of diversity similar to, but slightly higher than, that seen in the virulent human malaria parasite Plasmodium falciparum. The pairwise distribution of nucleotide differences among mitochondrial genome sequences supported the hypothesis that both these parasites underwent ancient population expansions. We estimated the age of the most recent common ancestor (MRCA) of the mitochondrial genomes of both P. vivax and P. falciparum at around 200,000-300,000 years ago. This is close to the previous estimates of the time of the human mitochondrial MRCA and the origin of modern Homo sapiens, consistent with the hypothesis that both these Plasmodium species were parasites of the hominid lineage before the origin of modern H. sapiens and that their population expansion coincided with the population expansion of their host.  相似文献   

20.
New drugs against malaria are urgently and continuously needed. Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems. A most important antioxidative system consists of (di)thiols which are recycled by disulfide reductases (DR), namely both glutathione reductases (GR) of the malarial parasite Plasmodium falciparum and man, and the thioredoxin reductase (TrxR) of P. falciparum. The aim of our interdisciplinary research is to substantiate DR inhibitors as antimalarial agents. Such compounds are active per se but, in addition, they can reverse thiol-based resistance against other drugs in parasites. Reversal of drug resistance by DR inhibitors is currently investigated for the commonly used antimalarial drug chloroquine (CQ). Our recent strategy is based on the synthesis of inhibitors of the glutathione reductases from parasite and host erythrocyte. With the expectation of a synergistic or additive effect, double-headed prodrugs were designed to be directed against two different and essential functions of the malarial parasite P. falciparum, namely glutathione regeneration and heme detoxification. The prodrugs were prepared by linking bioreversibly a GR inhibitor to a 4-aminoquinoline moiety which is known to concentrate in the acidic food vacuole of parasites. Drug-enzyme interaction was correlated with antiparasitic action in vitro on strains resistant towards CQ and in vivo in Plasmodium berghei-infected mice as well as absence of cytotoxicity towards human cells. Because TrxR of P. falciparum was recently shown to be responsible for the residual glutathione disulfide-reducing capacity observed after GR inhibition in P. falciparum, future development of antimalarial drug-candidates that act by perturbing the redox equilibrium of parasites is based on the design of new double-drugs based on TrxR inhibitors as potential antimalarial drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号