首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antogonist [3H]-mepyramine is used to label histamine H1-receptors in guinea pig lung. Scatchard analysis reveals two classes of binding sites. Monovalent cations decrease steady-state binding (Na+ > Li+ > K+), while divalent cations (Mg++, Ca++, Mn++, Ba++) exhibit a biphasic curve, increasing binding at low concentrations and decreasing it at higher levels. Na+ decreases both affinity and number of binding sites. Dissociation curve shows two components, and Na+ accelerates the rate of dissociation of the slower component. GTP does not affect the binding of the antagonist 3H-Mepyramine.  相似文献   

2.
The selective adsorption of the cations Na+, K+, Mg++ and Ca++ by the cell wall of the Mediterranean algaValonia utricularis (Siphonocladales, Chlorophyceae) from sea water of 40 %. S was investigated by extraction of cell-wall preparations, eluted before in 1.1 mol methanol (adjusted to pH 8) with 0.1 n formic acid in a Soxhlet apparatus. Na+ and K+ were determined by flame photometry, Mg++ and Ca++ by complexometric titration with EDTA. From calculation of the dry weight:fresh weight ratios and the chloride determinations in the eluates, the Donnan free-space fraction of the total cell-wall volume was calculated to about 35 %, and the analytical results of the cation concentrations in the extracts expressed asVal cm–3 DFS. This calculation is based on the assumption that the acidic groups of the noncellulosic matrix material, carrying negative charges by dissociation at the reaction of sea water (ph about 8) are responsible for the adsorption of cations by exhibition of a Donnan effect. The results obtained show clearly that besides the divalent cations Mg++ and Ca++, which according to the physico-chemical laws of the Donnan distribution must be relatively accumulated to the second power of the monovalent ones, potassium is also enriched by selective adsorption, and the K+:Na+ ratio increased significantly compared with that in sea water. This seems to indicate that the strength of attraction between the cations and the negative sites is dependent on the radii of the ions and the state of hydration and/or polarisation of the ions and binding sites.  相似文献   

3.
Abstract

A procedure for purification of the bungarotoxin-binding fraction of sarcolemma from rabbit skeletal muscle is described. Muscle is homogenized in 0.25M sucrose without high salt extraction and membrane fractions separated initially by differential centrifugation procedures. An ultracentrifugation pellet enriched in cell surface and sarcoplasmic reticulum markers is further fractionated on a dextran gradient (density = 1.0 to 1.09). Two fractions are identified as sarcolemma according to high specific activities for lactoperoxidaseiodination, Na+, K+-ATPase and α-bungarotoxin-binding. No Ca++, Mg++-ATPase activity is found in these fractions. A third fraction, the dextran gradient pellet, is enriched in Ca++, Mg++-ATPase activity and lactoperoxidase iodinatable material and characterized by low bungarotoxin binding. This fraction represents a mixture of sarcoplasmic reticulum and transverse tubules with some sarcolemma contamination.  相似文献   

4.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

5.
In the negative EOG-generating process a cation which can substitute for Na+ was sought among the monovalent ions, Li+, Rb+, Cs+, NH4+, and TEA+, the divalent ions, Mg++, Ca++, Sr++, Ba++, Zn++, Cd++, Mn++, Co++, and Ni++, and the trivalent ions, Al+++ and Fe+++. In Ringer solutions in which Na+ was replaced by one of these cations the negative EOG's decreased in amplitude and could not maintain the original amplitudes. In K+-Ringer solution in which Na+ was replaced by K+, the negative EOG's reversed their polarity. Recovery of these reversed potentials was examined in modified Ringer solutions in which Na+ was replaced by one of the above cations. Complete recovery was found only in the normal Ringer solution. Thus, it was clarified that Na+ plays an irreplaceable role in the generation of the negative EOG's. The sieve hypothesis which was valid for the positive EOG-generating membrane or IPSP was not found applicable in any form to the negative EOG-generating membrane. The reversal of the negative EOG's found in K+- , Rb+- , and Ba++-Ringer solutions was attributed to the exit of the internal K+. It is, however, not known whether or not Cl- permeability increases in these Na+-free solutions and contributes to the generation of the reversed EOG's.  相似文献   

6.
The leak fluxes of Na+, K+, Mg++ and Ca++ in mouse thymocytes are increased by Concavaline A (Con A), within minutes after mitogen addition. The intracellular Mg++ and K+ concentrations were decreased and the Na+ and Ca++ contents were increased by Con A in mouse thymocytes and spleen cells.  相似文献   

7.
The ionic requirement for generating action potentials in ventral longitudinal muscle fibers dissected from beetle larvae was examined by conventional electrophysiological techniques. Muscle fibers that generated only graded responses in physiological saline were able to generate an all-or-none action potential when the potassium permeability of the membrane was inhibited by tetraethylammonium+ added to the saline. The peak of the action potential thus elicited was intimately related to the external Ca++ concentration. The action potential was blocked by Co++ which is known as a competitive inhibitor of Ca-spikes. Neither tetrodotoxin (3 μM) nor a Na-free condition effectively blocked the generation of the action potential. Mg++ induced a shift in the peak of the action potential; this was, however, due to the stabilizing action of Mg++ but not due to the penetration of Mg++ through the muscle membrane. No action potential was elicited in the muscle fiber when immersed in a Ca-free, EGTA saline even when a high concentration of either Mg++, Na+, or tetraethylammonium+ was present. The action potential of the larval muscle fiber was thus concluded to be a Ca-spike, through the channel of which Na+ or Mg++ did not penetrate.  相似文献   

8.
FALADE  J. A. 《Annals of botany》1973,37(2):345-353
The uptake of potassium, calcium, and magnesium ions by maizeand the interrelationships among the cations have been investigatedat 48 K: Ca: Mg ratios in culture solutions. Calcium was foundto stimulate K+ and Mg++ uptake at certain cation ratios butinhibit it at others. Potassium did the same for Ca++ uptake,and Mg++ for Ca++ and K+. The uptake of Mg++ was generally enhancedby K+. The sum of the cations in the plants expressed in meqwas fairly constant for treatments of the same K+ concentrationat the low to moderate levels of K+, but at considerably higher(> 24 meq l–1) K+ levels the constancy was not dependenton K+ concentration. Potassium depressed, but Mg++ stimulatedphosphorus accumulation. Calcium stimulated phosphate absorptionat certain cation ratios but had no effect at others. The plantyield increased with increasing K+ up to 24 meq l–1 ofK+ after which the yield tended to fall with further increasein K+. The yield was also increased by Ca++. Magnesium increasedthe yield at certain cation ratios and either depressed it orwas without effect at others.  相似文献   

9.
White erythrocyte membranes, or ghosts, were monoconcave discocytes when incubated in 50mM N-tris (hydroxymethyl) methyl-2-aminoethane sulfonic acid titrated to pH 7.4 with triethanolamine. If 3mM MgCl2 was included in the incubation medium, the ghosts were predominantly echinocytes. The echinocytic form could also be induced by Co++, Ni++, Li+, Na+, K+, NH4+ and tetramethylammonium ion, all as chloride salts. The concentration of cation necessary for 50% of the ghosts to be echinocytes was correlated with the hydrated charge density of the cation with the most highly charged cations being the most effective. The cations Ca++, Sr++, Ba++ and La+++, (also as chloride salts) did not induce the normal echinocytic form, but at high levels induced a few misshapen forms with some resemblance to echinocytes. Instead Ca++, Sr++, Ba++ and La+++ suppressed the formation of echinocytes in the presence of Mg++ and other ions. This suggests the presence of a specific Ca++ binding site important to shape control in the erythrocyte membrane.  相似文献   

10.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

11.
Behaviour of different water soluble and exchangeable bases in a brackishwater fish pond soil was studied under four levels of water salinity, in combination with and without organic matter application. The results showed average content of water soluble bases to increase with increase in water salinity. The bases were dominated by Na+ followed by Mg++, Ca++ and K+ in decreasing order. SAR values of water increased with increase in water salinity and decreased slightly on organic matter treatment.Total content of exchangeable bases in soils was fairly high and was dominated by Ca++ and Mg++, followed by Na+ and K+ respectively. Amount of exchangeable Ca++ + Mg++ decreased while that of Na+ increased with increase in water salinity levels. Amount of exchangeable K+ did not show any appreciable change. Application of organic matter tended to increase the exchangeable Ca++ + Mg++ content and decrease the amount of exchangeable Na+ in the soil, while exchangeable K+ content remained practically unaffected due to organic matter treatment.Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978Formed part of a Ph.D. thesis submitted to Bidhan Chandra Agricultural University, India in 1978  相似文献   

12.
Cell walls prepared from onion bulbs were found to exhibit an affinity for Ca++. The adsorption of this ion was enhanced by the action of pectin methylesterase. It was confirmed that Ca++ reacts with two COO“ groups and the corresponding affinity constant, K, was found to be: log K = 4.25. The action of pectin methylesterase had no effect upon K. The cell walls, as prepared, had 25 % of the total COO groups occupied by Ca++, 14 % by Mg++, and 39 % by H+. Treatment with acidified ethanol removed all of the metallic cations. K+ and Mg++ could displace Ca++ from the cell walls. At concentrations from 10−3 to 3 times 10−3 m it required from 4.9 to 13.2 moles of Mg++ to displace one mole of Ca++. For K+ it required 80 moles to displace 1 mole of Ca++ at K+ concentrations from 0.65 × 10−2 to 1.6 × 10−2 M.  相似文献   

13.
The partition of sulfate, Ca++, and Mg++ across the membrane of the sartorius muscle has been studied, and the effect of various concentrations of these ions in the Ringer solution on the cellular level of Na+, K+, and Cl- has been determined. The level of the three divalent ions in toad plasma and muscle in vivo has been assayed. Muscle was found to contain an almost undetectable amount of inorganic sulfate. Increases in the external level of these ions brought about increases in intracellular content, calculated from the found extracellular space as determined with radioiodinated serum albumin or inulin. Less of the cell water is available to sulfate than to Cl-, and the Mg++ space is less than the Na+ space. An amount of muscle water similar to that found for Li+ and I- appears to be available to these divalent ions. Sulfate efflux from the cell was extremely rapid, and it was not found possible to differentiate kinetically between intra- and extracellular material. These results are consistent with the theory of a three phase system, assuming the muscle to consist of an extracellular phase and two intracellular phases. Mg++ and Ca++ are adsorbed onto the ordered phase, and increments in cellular content found on raising the external level are assumed to occur in the free intracellular phase.  相似文献   

14.
Binding of [65Zn++] and [45Ca++] to the acetylcholine (ACh)-receptor, purified from the Torpedo electric organ, was studied by equilibrium dialysis. Whereas [65Zn++] bound to 56 nmoles of sites per mg protein with a dissociation constant of 2.5 × 10−6M, no binding of [45Ca++] at concentrations up to 10−3M could be detected with this method. However, the binding of [acetyl-3H]choline to the receptor was blocked equally by very high Zn++ or Ca++ concentrations, and the Ki for this low affinity binding was 7 × 10−3M. The high affinity binding of [65Zn++] to the receptor was blocked best by Cd++ then Co++ and Mn++, but least by Mg++ and Ca++. When the purified ACh-receptor itself was analyzed for the presence of cations by atomic absorption, it was discovered that 4.7% of its weight was due to bound Ca++ that could not be removed even by extensive dialysis. When Ca++-free solutions (containing 1 mM EDTA) were used during purification, 0.6% of the molecular weight of the receptor was still due to bound Ca++. This was equivalent to 15 moles of Ca++ for each mole of ACh bound at saturation. It is suggested that the source of this Ca++ is endogenous, and that it is tightly bound to the ACh-receptor molecule.  相似文献   

15.
The influence of K+, Na+, Mg++, Li+, a serotonin, acetylcholine and tubocurarine on calcium-ganglioside-interactions was studied by way of equilibrium dialysis using 45Ca as tracer. Experiments were carried out at 22 °C and 4 °C, respectively. The concentrations of the substances were in the range of physiologically relevant conditions. Cations caused a release of Ca++ from calcium-ganglioside-complexes in the sequence of their molar efficiency: Mg++ ≈ Li+ > K+ ≈ Na+. Tubocurarine, serotonin and acetylcholine also affected calcium-ganglioside-interactions. Ca++ was displaced from ganglioside most effectively by tubocurarine, followed by serotonin, whereas acetylcholine competed considerably more weakly.  相似文献   

16.
The active transport of Mg++ and Mn++ into the yeast cell   总被引:5,自引:6,他引:5  
Certain bivalent cations, particularly Mg++ and Mn++, can be absorbed by yeast cells, provided that glucose is available, and that phosphate is also absorbed. The cation absorption is stimulated by potassium in low concentrations, but inhibited by higher concentrations. From the time course studies, it is apparent that the absorption rather than the presence of phosphate and the potassium is the important factor. Competition studies with pairs of cations indicate that binding on the surface of the cell is not a prerequisite to absorption. The absorption mechanism if highly selective for Mg++ and Mn++, as compared to Ca++, Sr++, and UO2++, whereas the binding affinity is greatest for UO2++, with little discrimination between Mg++, Ca++, Mn++, and Sr++. In contrast to the surface-bound cations which are completely exchangeable, the absorbed cations are not exchangeable. It is concluded that Mg++ and Mn++ are actively transported into the cell by a mechanism involving a phosphate and a protein constituent.  相似文献   

17.
Summary We have shown that a Ca++-ionophore activity is present in the (Ca+++Mg++)-ATPase of rabbit skeletal muscle sarcoplasmic reticulum (A.E. Shamoo & D.H. MacLennan, 1974.Proc. Nat. Acad. Sci. USA 71:3522). Methylmercuric chloride inhibited the (Ca+++Mg++)-ATPase and Ca++ transport, but had no effect on the activity of the Ca++ ionophore. Mercuric chloride inhibited ATPase, transport and ionophore activity. The ATPase and transport functions were more sensitive to methylmercuric chloride than to mercuric chloride. The two functions were inhibited concomitantly by methylmercuric chloride but slightly lower concentrations of mercuric chloride were required to inhibit Ca++ transport than were required to inhibit ATPase. Methylmercuric chloride and mercuric chloride probably inhibited ATPase and Ca++ transport by blocking essential-SH groups. However, it appears that there are no essential-SH groups in the Ca++ ionophore and that mercuric chloride inhibited the Ca++ ionophore activity by competition with Ca++ for the ionophoric site. Blockage of Ca++ transport by mercuric chloride probably occurs both at sites of essential-SH groups and at sites of ionophoric activity. These data suggest the separate identity of the sites of ATP hydrolysis and of Ca++ ionophoric activity.  相似文献   

18.
K+ is a competitive inhibitor of the uptake of the other alkali metal cations by yeast. Rb+ is a competitive inhibitor of K+ uptake, but Li+, Na+, and Cs+ act like H+. At relatively low concentrations they behave as apparent noncompetitive inhibitors of K+ transport, but the inhibition is incomplete. At higher concentrations they inhibit the remaining K+ transport competitively. Ca++ and Mg++ in relatively low concentrations partially inhibit K+ transport in an apparently noncompetitive manner although their affinity for the transport site is very low. In each case, in concentrations that produce "noncompetitive" inhibition, very little of the inhibiting cation is transported into the cell. Competitive inhibition is accompanied by appreciable uptake of the inhibiting cation. The apparently noncompetitive effect of other cations is reversed by K+ concentrations much higher than those necessary to essentially "saturate" the transport system. A model is proposed which can account for the inhibition kinetics. This model is based on two cation-binding sites for which cations compete, a carrier or transporting site, and a second nontransporting (modifier) site with a different array of affinities for cations. The association of certain cations with the modifier site leads to a reduction in the turnover of the carrier, the degree of reduction depending on the cation bound to the modifier site and on the cation being transported.  相似文献   

19.
The influence of Ca++, several drugs, and pH on the binding of Ca++ by skeletal muscle microsomes was studied in vitro. A mass-law graphic analysis revealed the presence of three distinct species of Ca++-binding sites in the microsomes, and the binding at only one of these sites was antagonized by local anesthetics and quinidine. These drugs also decreased the maximum Ca++-binding capacity of the microsomes. Caffeine and ouabain exerted no effect on the binding at any of the sites. Procaine was also bound by microsomes, and this binding was antagonized by Ca++, which also decreased the maximum procaine-binding capacity of microsomes. The sites that bind procaine and Ca++ are not identical because the maximum-binding capacities of the interacting sites are distinctly different. The influence of pH on the ability of drugs to antagonize Ca++ binding indicates that the displacing activity increases as the percentage of the drug in the nonionized form increases. All of the data obtained in the above studies are consistent with the interpretation that quinidine and local anesthetics of the procaine type noncompetitively antagonize the binding of Ca++ by microsomes. The pharmacological significance of a noncompetitive interaction may be related to the property of local anesthetics and quinidine to increase contractile tension in skeletal muscle rather than to their ability to stabilize the cell membrane.  相似文献   

20.
The aim of this study is to follow the thermodynamic behaviour of Na+ ions, acting as natural counterions of DNA, in the presence of divalent metal ions, by using the23Na NMR technique. With the help of the23Na entropy of fluctuations concept introduced by Lenk, we propose the following decreasing sequence: Mg++, Zn++, Cd++, Mn++, and Cu++, for the magnitude of divalent metal ions interactions with DNA phosphate sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号