首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenomenon of backward bifurcation in disease models, where a stable endemic equilibrium co-exists with a stable disease-free equilibrium when the associated reproduction number is less than unity, has important implications for disease control. In such a scenario, the classical requirement of the reproduction number being less than unity becomes only a necessary, but not sufficient, condition for disease elimination. This paper addresses the role of the choice of incidence function in a vaccine-induced backward bifurcation in HIV models. Several examples are given where backward bifurcations occur using standard incidence, but not with their equivalents that employ mass action incidence. Furthermore, this result is independent of the type of vaccination program adopted. These results emphasize the need for further work on the incidence functions used in HIV models.  相似文献   

2.
The paper considers a deterministic model for the transmission dynamics of West Nile virus (WNV) in the mosquito-bird-human zoonotic cycle. The model, which incorporates density-dependent contact rates between the mosquito population and the hosts (birds and humans), is rigorously analyzed using dynamical systems techniques and theories. These analyses reveal the existence of the phenomenon of backward bifurcation (where the stable disease-free equilibrium of the model co-exists with a stable endemic equilibrium when the reproduction number of the disease is less than unity) in WNV transmission dynamics. The epidemiological consequence of backward bifurcation is that the classical requirement of having the reproduction number less than unity, while necessary, is no longer sufficient for WNV elimination from the population. It is further shown that the model with constant contact rates can also exhibit this phenomenon if the WNV-induced mortality in the avian population is high enough. The model is extended to assess the impact of some anti-WNV control measures, by re-formulating the model as an optimal control problem with density-dependent demographic parameters. This entails the use of two control functions, one for mosquito-reduction strategies and the other for personal (human) protection, and redefining the demographic parameters as density-dependent rates. Appropriate optimal control methods are used to characterize the optimal levels of the two controls. Numerical simulations of the optimal control problem, using a set of reasonable parameter values, suggest that mosquito reduction controls should be emphasized ahead of personal protection measures.  相似文献   

3.
A recent randomized controlled trial shows a significant reduction in women-to-men transmission of HIV due to male circumcision. Such development calls for a rigorous mathematical study to ascertain the full impact of male circumcision in reducing HIV burden, especially in resource-poor nations where access to anti-retroviral drugs is limited. First of all, this paper presents a compartmental model for the transmission dynamics of HIV in a community where male circumcision is practiced. In addition to having a disease-free equilibrium, which is locally-asymptotically stable whenever a certain epidemiological threshold is less than unity, the model exhibits the phenomenon of backward bifurcation, where the disease-free equilibrium coexists with a stable endemic equilibrium when the threshold is less than unity. The implication of this result is that HIV may persist in the population even when the reproduction threshold is less than unity. Using partial data from South Africa, the study shows that male circumcision at 60% efficacy level can prevent up to 220,000 cases and 8,200 deaths in the country within a year. Further, it is shown that male circumcision can significantly reduce, but not eliminate, HIV burden in a community. However, disease elimination is feasible if male circumcision is combined with other interventions such as ARVs and condom use. It is shown that the combined use of male circumcision and ARVs is more effective in reducing disease burden than the combined use of male circumcision and condoms for a moderate condom compliance rate.  相似文献   

4.
The transmission of cholera involves both human-to-human and environment-to-human pathways that complicate its dynamics. In this paper, we present a new and unified deterministic model that incorporates a general incidence rate and a general formulation of the pathogen concentration to analyse the dynamics of cholera. Particularly, this work unifies many existing cholera models proposed by different authors. We conduct equilibrium analysis to carefully study the complex epidemic and endemic behaviour of the disease. Our results show that despite the incorporation of the environmental component, there exists a forward transcritical bifurcation at R (0)=1 for the combined human-environment epidemiological model under biologically reasonable conditions.  相似文献   

5.
Zika virus is a flavivirus transmitted to humans primarily through the bite of infected Aedes mosquitoes. In addition to vector-borne spread, however, the virus can also be transmitted through sexual contact. In this paper, we formulate and analyze a new system of ordinary differential equations which incorporates both vector and sexual transmission routes. Theoretical analysis of this model when there is no disease induced mortality shows that the disease-free equilibrium is locally and globally asymptotically stable whenever the associated reproduction number is less than unity and unstable otherwise. However, when we extend this same model to include Zika induced mortality, which have been documented in Latin America, we find that the model exhibits a backward bifurcation. Specifically, a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction number is less than unity. To further explore model predictions, we use numerical simulations to assess the importance of sexual transmission to disease dynamics. This analysis shows that risky behavior involving multiple sexual partners, particularly among male populations, substantially increases the number of infected individuals in the population, contributing significantly to the disease burden in the community.  相似文献   

6.
One major drawback associated with the use of anti-retroviral drugs in curtailing HIV spread in a population is the emergence and transmission of HIV strains that are resistant to these drugs. This paper presents a deterministic HIV treatment model, which incorporates a wild (drug sensitive) and a drug-resistant strain, for gaining insights into the dynamical features of the two strains, and determining effective ways to control HIV spread under this situation. Rigorous qualitative analysis of the model reveals that it has a globally asymptotically stable disease-free equilibrium whenever a certain epidemiological threshold (R t 0) is less than unity and that the disease will persist in the population when this threshold exceeds unity. Further, for the case where R t 0 > 1, it is shown that the model can have two co-existing endemic equilibria, and competitive exclusion phenomenon occurs whenever the associated reproduction number of the resistant strain (R t r) is greater than that of the wild strain (R t w). Unlike in the treatment model, it is shown that the model without treatment can have a family of infinitely many endemic equilibria when its associated epidemiological threshold (R(0)) exceeds unity. For the case when [Formula in text], it is shown that the widespread use of treatment against the wild strain can lead to its elimination from the community if the associated reduction in infectiousness of infected individuals (treated for the wild strain) does not exceed a certain threshold value (in this case, the use of treatment is expected to make R t w < R t r.  相似文献   

7.
A deterministic ordinary differential equation model for the dynamics of malaria transmission that explicitly integrates the demography and life style of the malaria vector and its interaction with the human population is developed and analyzed. The model is different from standard malaria transmission models in that the vectors involved in disease transmission are those that are questing for human blood. Model results indicate the existence of nontrivial disease free and endemic steady states, which can be driven to instability via a Hopf bifurcation as a parameter is varied in parameter space. Our model therefore captures oscillations that are known to exist in the dynamics of malaria transmission without recourse to external seasonal forcing. Additionally, our model exhibits the phenomenon of backward bifurcation. Two threshold parameters that can be used for purposes of control are identified and studied, and possible reasons why it has been difficult to eradicate malaria are advanced.  相似文献   

8.
This paper deals with the nonlinear dynamics of a susceptible-infectious-recovered (SIR) epidemic model with nonlinear incidence rate, vertical transmission, vaccination for the newborns of susceptible and recovered individuals, and the capacity of treatment. It is assumed that the treatment rate is proportional to the number of infectives when it is below the capacity and constant when the number of infectives reaches the capacity. Under some conditions, it is shown that there exists a backward bifurcation from an endemic equilibrium, which implies that the disease-free equilibrium coexists with an endemic equilibrium. In such a case, reducing the basic reproduction number less than unity is not enough to control and eradicate the disease, extra measures are needed to ensure that the solutions approach the disease-free equilibrium. When the basic reproduction number is greater than unity, the model can have multiple endemic equilibria due to the effect of treatment, vaccination and other parameters. The existence and stability of the endemic equilibria of the model are analyzed and sufficient conditions on the existence and stability of a limit cycle are obtained. Numerical simulations are presented to illustrate the analytical results.  相似文献   

9.
A deterministic model for assessing the dynamics of mixed species malaria infections in a human population is presented to investigate the effects of dual infection with Plasmodium malariae and Plasmodium falciparum. Qualitative analysis of the model including positivity and boundedness is performed. In addition to the disease free equilibrium, we show that there exists a boundary equilibrium corresponding to each species. The isolation reproductive number of each species is computed as well as the reproductive number of the full model. Conditions for global stability of the disease free equilibrium as well as local stability of the boundary equilibria are derived. The model has an interior equilibrium which exists if at least one of the isolation reproductive numbers is greater than unity. Among the interesting dynamical behaviours of the model, the phenomenon of backward bifurcation where a stable boundary equilibrium coexists with a stable interior equilibrium, for a certain range of the associated invasion reproductive number less than unity is observed. Results from analysis of the model show that, when cross-immunity between the two species is weak, there is a high probability of coexistence of the two species and when cross-immunity is strong, competitive exclusion is high. Further, an increase in the reproductive number of species i increases the stability of its boundary equilibrium and its ability to invade an equilibrium of species j. Numerical simulations support our analytical conclusions and illustrate possible behaviour scenarios of the model.  相似文献   

10.
The transmission of cholera involves both human-to-human and environment-to-human pathways that complicate its dynamics. In this paper, we present a new and unified deterministic model that incorporates a general incidence rate and a general formulation of the pathogen concentration to analyse the dynamics of cholera. Particularly, this work unifies many existing cholera models proposed by different authors. We conduct equilibrium analysis to carefully study the complex epidemic and endemic behaviour of the disease. Our results show that despite the incorporation of the environmental component, there exists a forward transcritical bifurcation at R 0=1 for the combined human–environment epidemiological model under biologically reasonable conditions.  相似文献   

11.
One goal of this paper is to give an algorithm for computing a threshold condition for epidemiological systems arising from compartmental deterministic modeling. We calculate a threshold condition T(0) of the parameters of the system such that if T(0)<1 the disease-free equilibrium (DFE) is locally asymptotically stable (LAS), and if T(0)>1, the DFE is unstable. The second objective, by adding some reasonable assumptions, is to give, depending on the model, necessary and sufficient conditions for global asymptotic stability (GAS) of the DFE. In many cases, we can prove that a necessary and sufficient condition for the global asymptotic stability of the DFE is R(0)< or =1, where R(0) is the basic reproduction number [O. Diekmann, J.A. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000]. To illustrate our results, we apply our techniques to examples taken from the literature. In these examples we improve the results already obtained for the GAS of the DFE. We show that our algorithm is relevant for high dimensional epidemiological models.  相似文献   

12.
In this research article, an epidemiological model is formulated for mosaic disease considering plant and vector populations. Plant host population has been divided into three compartments namely healthy, latently infected and infected ones, and vector population is divided into two compartments: non-infective and infective vectors. The system possesses three equilibria: plant-only, disease-free and endemic equilibrium. Plant-only equilibrium is always unstable; disease-free equilibrium is stable when the basic reproduction number, R0, is less than unity and unstable for when it crosses unity, and ensure existence of an endemic equilibrium which may be stable or can undergo a Hopf bifurcation. Finally, impulse periodic roguing with varied rate and time interval is adopted for cost effective and eco-friendly disease control and future direction of agriculture management. The dynamics of the impulsive system has also been analysed. Detailed numerical simulations are employed to support the analytical results. We found that roguing is most cost effective and useful management for mosaic disease eradication of plants if applied at proper rate and interval.  相似文献   

13.
The re-emergence of syphilis has become a global public health issue, and more persons are getting infected, especially in developing countries. This has also led to an increase in the incidence of human immunodeficiency virus (HIV) infections as some studies have shown in the recent decade. This paper investigates the synergistic interaction between HIV and syphilis using a mathematical model that assesses the impact of syphilis treatment on the dynamics of syphilis and HIV co-infection in a human population where HIV treatment is not readily available or accessible to HIV-infected individuals. In the absence of HIV, the syphilis-only model undergoes the phenomenon of backward bifurcation when the associated reproduction number (\({\mathcal {R}}_{T}\)) is less than unity, due to susceptibility to syphilis reinfection after recovery from a previous infection. The complete syphilis–HIV co-infection model also undergoes the phenomenon of backward bifurcation when the associated effective reproduction number (\({\mathcal {R}}_{C}\)) is less than unity for the same reason as the syphilis-only model. When susceptibility to syphilis reinfection after treatment is insignificant, the disease-free equilibrium of the syphilis-only model is shown to be globally asymptotically stable whenever the associated reproduction number (\({\mathcal {R}}_{T}\)) is less than unity. Sensitivity and uncertainty analysis show that the top three parameters that drive the syphilis infection (with respect to the associated response function, \({\mathcal {R}}_{T}\)) are the contact rate (\(\beta _S\)), modification parameter that accounts for the increased infectiousness of syphilis-infected individuals in the secondary stage of the infection (\(\theta _1\)) and treatment rate for syphilis-only infected individuals in the primary stage of the infection (\(r_1\)). The co-infection model was numerically simulated to investigate the impact of various treatment strategies for primary and secondary syphilis, in both singly and dually infected individuals, on the dynamics of the co-infection of syphilis and HIV. It is observed that if concerted effort is exerted in the treatment of primary and secondary syphilis (in both singly and dually infected individuals), especially with high treatment rates for primary syphilis, this will result in a reduction in the incidence of HIV (and its co-infection with syphilis) in the population.  相似文献   

14.
In this paper we consider the phenomenon of backward bifurcation in epidemic modelling illustrated by an extended model for Bovine Respiratory Syncytial Virus (BRSV) amongst cattle. In its simplest form, backward bifurcation in epidemic models usually implies the existence of two subcritical endemic equilibria for R 0 < 1, where R 0 is the basic reproductive number, and a unique supercritical endemic equilibrium for R 0 > 1. In our three-stage extended model we find that more complex bifurcation diagrams are possible. The paper starts with a review of some of the previous work on backward bifurcation then describes our three-stage model. We give equilibrium and stability results, and also provide some biological motivation for the model being studied. It is shown that backward bifurcation can occur in the three-stage model for small b, where b is the common per capita birth and death rate. We are able to classify the possible bifurcation diagrams. Some realistic numerical examples are discussed at the end of the paper, both for b small and for larger values of b.   相似文献   

15.
The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.  相似文献   

16.
This paper presents a number of deterministic models for theoretically assessing the potential impact of an imperfect prophylactic HIV-1 vaccine that has five biological modes of action, namely “take,” “degree,” “duration,” “infectiousness,” and “progression,” and can lead to increased risky behavior. The models, which are of the form of systems of nonlinear differential equations, are constructed via a progressive refinement of a basic model to incorporate more realistic features of HIV pathogenesis and epidemiology such as staged progression, differential infectivity, and HIV transmission by AIDS patients. The models are analyzed to gain insights into the qualitative features of the associated equilibria. This allows the determination of important epidemiological thresholds such as the basic reproduction numbers and a measure for vaccine impact or efficacy. The key findings of the study include the following (i) if the vaccinated reproduction number is greater than unity, each of the models considered has a locally unstable disease-free equilibrium and a unique endemic equilibrium; (ii) owing to the vaccine-induced backward bifurcation in these models, the classical epidemiological requirement of vaccinated reproduction number being less than unity does not guarantee disease elimination in these models; (iii) an imperfect vaccine will reduce HIV prevalence and mortality if the reproduction number for a wholly vaccinated population is less than the corresponding reproduction number in the absence of vaccination; (iv) the expressions for the vaccine characteristics of the refined models take the same general structure as those of the basic model.  相似文献   

17.
Mathematical models have long been used to better understand disease transmission dynamics and how to effectively control them. Here, a chancroid infection model is presented and analyzed. The disease-free equilibrium is shown to be globally asymptotically stable when the reproduction number is less than unity. High levels of treatment are shown to reduce the reproduction number suggesting that treatment has the potential to control chancroid infections in any given community. This result is also supported by numerical simulations which show a decline in chancroid cases whenever the reproduction number is less than unity.  相似文献   

18.
A modelling approach is used for studying the effects of population vaccination on the epidemic dynamics of a set of n cities interconnected by a complex transportation network. The model is based on a sophisticated mover-stayer formulation of inter-city population migration, upon which is included the classical SIS dynamics of disease transmission which operates within each city. Our analysis studies the stability properties of the Disease-Free Equilibrium (DFE) of the full n-city system in terms of the reproductive number R (0). Should vaccination reduce R (0) below unity, the disease will be eradicated in all n-cities. We determine the precise conditions for which this occurs, and show that disease eradication by vaccination depend on the transportation structure of the migration network in a very direct manner. Several concrete examples are presented and discussed, and some counter-intuitive results found.  相似文献   

19.
Many disease pathogens stimulate immunity in their hosts, which then wanes over time. To better understand the impact of this immunity on epidemiological dynamics, we propose an epidemic model structured according to immunity level that can be applied in many different settings. Under biologically realistic hypotheses, we find that immunity alone never creates a backward bifurcation of the disease-free steady state. This does not rule out the possibility of multiple stable equilibria, but we provide two sufficient conditions for the uniqueness of the endemic equilibrium, and show that these conditions ensure uniqueness in several common special cases. Our results indicate that the within-host dynamics of immunity can, in principle, have important consequences for population-level dynamics, but also suggest that this would require strong non-monotone effects in the immune response to infection. Neutralizing antibody titer data for measles are used to demonstrate the biological application of our theory.  相似文献   

20.
Epidemic control strategies alter the spread of the disease in the host population. In this paper, we describe and discuss mathematical models that can be used to explore the potential of pre-exposure and post-exposure vaccines currently under development in the control of tuberculosis. A model with bacille Calmette-Guerin (BCG) vaccination for the susceptibles and treatment for the infectives is first presented. The epidemic thresholds known as the basic reproduction numbers and equilibria for the models are determined and stabilities are investigated. The reproduction numbers for the models are compared to assess the impact of the vaccines currently under development. The centre manifold theory is used to show the existence of backward bifurcation when the associated reproduction number is less than unity and that the unique endemic equilibrium is locally asymptotically stable when the associated reproduction number is greater than unity. From the study we conclude that the pre-exposure vaccine currently under development coupled with chemoprophylaxis for the latently infected and treatment of infectives is more effective when compared to the post-exposure vaccine currently under development for the latently infected coupled with treatment of the infectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号