首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report here studies of the cellular control of F plasmid TraJ protein levels, focusing on the effects of chromosomal cpx mutations. The principal conclusion from our results is that the cpx mutations impair accumulation of the TraJ protein, thereby reducing tra gene expression. We measured TraJ activity in vivo by expression of a traY'-'lacZ fusion gene and TraJ protein by immuno-overlay blot. In strains with normal TraJ levels, traY expression and donor-related functions were reduced in cells carrying any of four cpxA mutations. In the strain background used to isolate cpx mutants, these reductions were especially evident in cells grown to high density, when traY expression and donor activity both increased in cpx+ cells. In each of the four cpxA mutants tested, TraJ levels were lower than in the otherwise isogenic cpxA+ strain. In cells grown to high density, the differences ranged from 4-fold in the cpxA6 strain to > 10-fold in the cpxA2, cpxA5, and cpxA9 strains. The cpxA2 mutation had little or no effect on traY expression or on donor-related functions when TraJ was present in excess of its limiting level in F' or Hfr cells or on a mutant traY promoter whose expression in vivo was independent of TraJ.  相似文献   

2.
We have investigated conditions in vitro for the analysis of replication of ultraviolet-irradiated ColE1 DNA in cell extracts from Escherichia coli. In wild-type extracts substantial replication was obtained; however, this could be greatly reduced when the irradiated plasmid was incubated in extracts prepared from a uvrA recB strain. Modest stimulation of DNA replication was then obtained by addition of extracts from the same strain previously ultraviolet-irradiated. However, this stimulating activity proved to be highly unstable and has so far proved unsuitable as a basis for purification of specific factors involved in replication on irradiated templates. We also investigated the mutagenesis of pBR325 DNA replicated in cell extracts from a strain expressing the SOS response constitutively. Conditions for efficient recovery and transformation by plasmid DNA replicated in vitro were determined and, using this system, a more than 10-fold increase in reversion frequency of a mutation in the tet gene, compared to that with wild-type extracts, was obtained. This mutagenesis appeared to be independent of replication, indicating the presence of an error-prone repair system in the extract. This effect was not enhanced by the presence of the muc gene products in the extracts. This suggests that the observed mutagenesis is also independent of the lexA-controlled umuCD genes.  相似文献   

3.
4.
M Ishiai  C Wada  Y Kawasaki    T Yura 《Journal of bacteriology》1992,174(17):5597-5603
A subset of Escherichia coli heat shock proteins, DnaJ, DnaK, and GrpE, is required for mini-F plasmid replication, presumably at the step of functioning of the RepE initiator protein. We have isolated and characterized mini-F plasmid mutants that acquired the ability to replicate in the Escherichia coli dnaJ259. The mutant plasmids were found to replicate in any of dnaJ, dnaK, and grpE mutant hosts tested. In each case, the majority of the mutant plasmids carried a unique amino acid alteration in a localized region of repE coding sequence and showed an increased copy number, whereas the minority contained a common single base change (C to T) in the promoter/operator region and produced an increased amount of RepE. All RepE proteins with altered residues (between 92 and 134) exhibited increased initiator activities (hyperactive), and many showed reduced repressor activities as well, indicating that this region is important for the both major functions of RepE protein. These results together with evidence reported elsewhere indicate that the subset of heat shock proteins serves to activate RepE protein prior to or during its binding to the replication origin and that the mutant RepE proteins are active even in their absence. We also found that a C-terminal lesion (repE602) reduces the initiator activity particularly of some hyperactive mutant RepE proteins but does not affect the repressor activity. This finding suggests a functional interaction between the central and C-terminal regions of RepE in carrying out the initiator function.  相似文献   

5.
6.
A series of Escherichia coli strains deficient in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42 degrees C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

7.
8.
9.
Summary The replication of an F plasmid in a dnaC mutant, thermolabile for initiation of chromosomal replication, has been re-examined using a novel DNA-DNA annealing assay. Plasmid replication ceases rapidly at non-permissive conditions, consistent with a direct role for the dnaC product in the replication of F.  相似文献   

10.
The plasmid R6K has been introduced into a number of Escherichia coli polymerase deficient (pol) mutants. In polCts mutants transferred to the nonpermissive temperature to inactivate polymerase III, R6K replicates but the replication products have a density in dye-CsCl gradients intermediate between supercoiled and linear forms. This aberrant replication requires normal cellular levels of polymerase I since it does not occur in polA polCts mutants. Normal R6K replication and maintenance occur in a polA polB polC+ host, however, we cannot tell from our experiments wheather polymerase I or III replicates R6K in polA+ polC+ host. Polymerase II, the polB gene product, has no detectable role in R6K replication.  相似文献   

11.
DNA replication in Escherichia coli mutants that lack protein HU.   总被引:7,自引:4,他引:7       下载免费PDF全文
T Ogawa  M Wada  Y Kano  F Imamoto    T Okazaki 《Journal of bacteriology》1989,171(10):5672-5679
  相似文献   

12.
13.
14.
FtsH is an ATP-dependent protease that is essential for cell viability in Escherichia coli. The essential function of FtsH is to maintain the proper balance of biosynthesis of major membrane components, lipopolysaccharide and phospholipids. F plasmid uses a partitioning system and is localized at specific cell positions, which may be related to the cell envelope, to ensure accurate partitioning. We have examined the effects of ftsH mutations on the maintenance of a mini-F plasmid, and have found that temperature-sensitive ftsH mutants are defective in mini-F plasmid partition, but not replication, at permissive temperature for cell growth. A significant fraction of replicated plasmid molecules tend to localize close together on one side of the cell, which may result in failure to pass the plasmid to one of the two daughter cells upon cell division. By contrast, an ftsH null mutant carrying the suppressor mutation sfhC did not affect partitioning of the plasmid. The sfhC mutation also suppressed defective maintenance in temperature-sensitive ftsH mutants. Using this new phenotype caused by ftsH mutations, we also isolated a new temperature-sensitive ftsH mutant. Mutations in ftsH cause an increase in the lipopolysaccharide/ phospholipid ratio due to stabilization of the lpxC gene product, which is involved in lipopolysaccharide synthesis and is a substrate for proteolysis by the FtsH protease. It is likely that altered membrane structure affects the localization or activity of a putative plasmid partitioning apparatus located at positions equivalent to 1/4 and 3/4 of the cell length.  相似文献   

15.
Summary Plasmid pTSO118 containing the Escherichia coli origin of replication, oriC, initiated replication simultaneously with the chromosome when temperature-sensitive host cells were synchronized by temperature shifts. Replicating intermediates of the plasmid as well as of the chromosome were isolated from the outer membrane fraction of the cell. Plasmid DNA with eye structures was enriched when cytosine-1--arabinofuranoside was introduced into the culture during replication. Electron microscopy of the replicating molecules, after digestion with restriction endonucleases, showed that the replication fork proceeds exclusively counter-clockwise towards the unc operon. We conclude that the replication of the oriC plasmid is unidirectional or, if bidirectional, is highly asymmetric.  相似文献   

16.
17.
Aspects of plasmid F maintenance in Escherichia coli   总被引:6,自引:0,他引:6  
A major class of replicons in procaryotes is typified by low copy number, nonrandom intracellular distribution, and stable inheritance. Included in this class are chromosomes of gram-positive and gram-negative bacteria as well as a number of plasmids from these organisms. Replicons in this major class have remarkable structural and functional similarities in the genes that effect and control replication. In the present work a review of plasmid F is presented as a paradigm for many aspects of this group's maintenance features.  相似文献   

18.
An Escherichia coli cya mutant deficient in adenylyl cyclase and an E. coli crp mutant deficient in cyclic AMP receptor protein (CRP) accumulate substantial amounts of L-glutamate extracellularly when entering stationary phase of growth. The cya mutant grown in the presence of cyclic AMP accumulates little glutamate whereas the addition of cyclic AMP has no effect on glutamate accumulation in the crp mutant. It is proposed that an E. coli cell entering stationary phase requires a change in cell envelope structure which involes a cyclic AMP-CRP dependent process, and without this process the permeability of the cell membrane increases.  相似文献   

19.
Summary The replication cycle of Escherichia coli dam mutants was analysed and compared with that of isogenic Dam+ strains. Marker frequency analyses indicated no gross difference between the strains. In the Dam as well as in the Dam+ bacteria, initiation most likely occurs at oriC, replication forks move at a constant and invariant velocity, and termination takes place in the terC region. An analysis of replication terminator activity indicated that this activity is unaffected by the methylation status. Taken together with previous results, our data are compatible with Dam methylation controlling initiation timing but no subsequent step of the replication process.  相似文献   

20.
The binding of SopA to the promoter region of its own gene, in which four copies of SopA's recognition sequence, 5'-CTTTGC-3', are arrayed asymmetrically, was examined in vitro. Titration using electrophoretic mobility shift assay showed that the stoichiometry of SopA protomers to the promoter-region DNA is 4 and that the binding is highly co-operative. The co-operativity was corroborated by EMSA and DNase I footprinting for a number of mutant DNA fragments in which 5'-CTTTGC-3' was changed to 5'-CTTACG-3'. EMSA in the style of circular permutation showed that SopA bends DNA. Mutation at either outermost binding site had a different effect on DNA bending by SopA, reflecting the asymmetry in the arrangement of the binding sites, for which the results of DNase I footprinting were in agreement. Gel filtration chromatography and analytical ultracentrifugation of free SopA showed that the protein can exist as a monomer and oligomers in the absence of ATP. Hence, the results indicate that the co-operativity in SopA's DNA binding is based on its intrinsic protein-protein interaction modified by DNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号