首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Beef heart cytochrome oxidase (EC 1.9.3.1) prepared in this laboratory consistently presents 10 Coomassie blue staining zones on SDS-polyacrylamide gel electrophoresis. At pH 7.0 only two of these polypeptides (III and VIa) are labelled by radioactive N-ethyl maleimide (NEM). The labelling of VIa is variable and correlates with activity of particular oxidase preparations. When cytochrome oxidase is isolated from alkylated membranes, either mitochrondria or electron transport particles, polypeptide VIa is found not to be labelled; polypeptide III is more strongly labelled than when isolated oxidase is alkylated, and label now appears in polypeptide I which is not alkylated upon treatment of isolated oxidase with NEM.  相似文献   

2.
Isolated cytochrome c oxidase was fractionated by native-gel electrophoresis in Triton X-100, and a preparation of enzyme almost completely free of the usual impurities was recovered. This fraction was used to generate antibodies specific to cytochrome c oxidase. These antibodies inhibited cytochrome c oxidase activity rapidly and completely and immunoprecipitated an enzyme containing seven different subunits from detergent-solubilized mitochondria or submitochondrial particles. Reaction of detergent-solubilized cytochrome c oxidase with [35S]diazobenzenesulfonate labeled all seven subunits although I and VI were much less reactive than the other five components. When cytochrome c oxidase was immunoprecipitated from mitochondria which had been reacted with [35S]DABS, subunits II and III were the only components labeled. When the complex was immunoprecipitated from labeled submitochondrial particles, II, III, IV, V, and VII were all labeled. Polypeptides I and VI were not labeled from either side of the membrane. These results confirm earlier studies which showed that cytochrome c oxidase spans the mitochondrial inner membrane and is asymmetrically arranged across this permeability barrier.  相似文献   

3.
The inhibition of cytochrome c oxidase by cyanide, starting either with the resting or the pulsed enzyme, was studied by rapid-freeze quenching followed by quantitative e.p.r. It is found that a partial reduction of cytochrome oxidase by transfer of 2 electron equivalents from ferrocytochrome c to cytochrome a and CuA will induce a transition from a closed to an open enzyme conformation, rendering the cytochrome a3-CuB site accessible for cyanide binding, possibly as a bridging ligand. A heterogeneity in the enzyme is observed in that an e.p.r. signal from the cytochrome a3 3+-HCN complex is only found in 20% of the molecules, whereas the remaining cyanide-bound a3-CuB sites are e.p.r.-silent.  相似文献   

4.
Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of the human cytochrome c oxidase preparations with either human cytochrome c or horse cytochrome c were studied spectrophotometrically and compared with those of bovine heart cytochrome c oxidase. The interaction between human cytochrome c and human cytochrome c oxidase proved to be highly specific. It is proposed that for efficient electron transfer to occur, a conformational change in the complex is required, thereby shifting the initially unfavourable redox equilibrium. The very slow presteady-state reaction between human cytochrome c oxidase and horse cytochrome c suggests that, in this case, the conformational change does not occur. The proposed model was also used to explain the steady-state kinetic parameters under various conditions. At high ionic strength (I = 200 mM, pH 7.4), the kcat was highly dependent on the type of oxidase and it is proposed that the internal electron transfer is the rate-limiting step. The kcat value of the 'high-affinity' phase, observed at low ionic strength (I = 18 mM, pH 7.4), was determined by the cytochrome c/cytochrome c oxidase combination applied, whereas the Km was highly dependent only on the type of cytochrome c used. Our results suggest that, depending on the cytochrome c/cytochrome c oxidase combination, either the dissociation of ferricytochrome c or the internal electron transfer is the rate-limiting step in the 'high-affinity' phase at low ionic strength. The 'low-affinity' kcat value was not only determined by the type of oxidase used, but also by the type of cytochrome c. It is proposed that the internal electron-transfer rate of the 'low-affinity' reaction is enhanced by the binding of a second molecule of cytochrome c.  相似文献   

5.
The effect of various inhibitors on the substrate-dependent quenching of the fluorescence of 9-aminoacridine was measured in inside-out membrane vesicles of Escherichia coli. The rate of fluorescence quenching in the presence of inhibitors was dependent on the rate of electron transfer through the respiratory chain with NADH, succinate, D-lactate or DL-glycerol 3-phosphate as substrates. Several patterns of response were given by the inhibitors. Inhibitors competitive with substrate, or those acting only on the dehydrogenases, gave a direct relationship between the extent of inhibition of oxidase activity and the rate of quenching. A biphasic relationship was given by 2-heptyl-4-hydroxyquinoline N-oxide and piericidin A which was due to these compounds acting both as inhibitors of the respiratory chain and, at higher concentrations, as uncoupling agents. Uncouplers inhibited fluorescence quenching with minimal inhibition of oxidase activity. The transmembrane pH difference was calculated from the extent of fluorescence quenching and the intravesicular volume. The maximum pH difference of 3.3--3.7 units was generated by each of the substrates tested.  相似文献   

6.
E.p.r.(electron-paramagnetic-resonance) spectra of the ferricytochromes were studied in normal and 'nickel-plated' pigeon heart mitochondria and pigeon heart submitochondrial particles. NiCL2 added to either mitochondria or particles was bound completely to the membranes, but none was transported across the vesicles. Hence, any perturbations of the haem e.p.r. spectra by Ni(II) should occur only for those cytochromes in close proximity to the exterior surface. Whenever Ni(II) can approach to within 1 nm of cytochrome haem. the consequent acceleration of the haem e.p.r. relaxation kinetics should elicit dipolar line broadening. Relaxation acceleration should also increase the incident power level required to saturate the haem e.p.r. signal. In pigeon heart mitochondria, at least three e.p.r. resonances, attributable in part to cytochromes c1, bK and br, are observed at gz=3.3 resonance. In these submitochondrial particles, the peak at gz=3.5 is missing, and the resonance at gz=3.6 resolves into two components, neither of which is sensitive to added Ni(ii). Addition of free haemin (ferric, a paramagnetic anion) to intact mitochondria elicits the same e.p.r. signal changes as does a preparation of submitochondrial particles. Saturation curves for cytochrome oxidase obtained for e.p.r. spectra of the high-spin form (g = 6) and the low-spin form (gz=3.1) also reveal no effect of Ni(II) on the haem e.p.r. relaxation in either mitochondria or inverted submitochondrial particles. Further, Ni(II) fails to alter the spectra or saturation properties of cytochrome c in either mitochondria or submitochondrial particles therefrom. Only with a 50-fold molar excess of Ni(II) can one accelerate the e.p.r. relaxation of cytochrome c in aqueous solution, although other more subtle types of magnetic interactions may occur between the cytochrome and either Ni(II) or ferricyanide. Addition of haemin to mitochondria likewise failed to alter the e.p.r. characteristics of either cytochrome c or cytochrome oxidase. The present observations strongly suggest that cytochromes bK, br and c1 reside on the exterior surface of the inner mitochondrial membrane. On the other hand, we find no positive evidence for the location of cytochrome c or cytochrome oxidase haem groups within 1 nm of either membrane surface. Because of possible shielding effects from the protein moieties, however, we cannot unequivocally assign the location of the haem groups to the membrane interior. The present results are not inconsistent with the observations of other investigators who used different techniques. However, it is clear that any model of energy coupling in mitochondrial oxidative phosphorylation must account for the positioning of all the b-c cytochrome haem groups on the outside.  相似文献   

7.
The intrinsic fluorescence of lauryl maltoside solubilized bovine heart cytochrome c oxidase has been determined to arise from tryptophan residues of the oxidase complex. The magnitude of the fluorescence is approximately 34% of that from n-acetyltryptophanamide (NATA). This level of fluorescence is consistent with an average heme to tryptophan distance of 30 A. The majority of the fluorescent tryptophan residues are in a hydrophobic environment as indicated by the fluorescence emission maximum at 328 nm and the differing effectiveness of the quenching agents: Cs+, I-, and acrylamide. Cesium was ineffective up to a concentration of 0.7 M, whereas quenching by the other surface quenching agent, iodide, was complex. Below 0.2 M, KI was ineffective whereas between 0.2 and 0.7 M 15% of the tryptophan fluorescence was found to be accessible to iodide. This pattern indicates that protein structural changes were induced by iodide and may be related to the chaotropic character of KI. Acrylamide was moderately effective as a quenching agent of the oxidase fluorescence with a Stern-Volmer constant of 2 M-1 compared with acrylamide quenching of NATA and the water-soluble enzyme aldolase having Stern-Volmer constants of 12 M-1 and 0.3 M-1, respectively. There was no effect of cytochrome c on the tryptophan emission intensity from cytochrome c oxidase under conditions where the two proteins form a tight, 1:1 complex, implying that the tryptophan residues near the cytochrome c binding site are already quenched by energy transfer to the homes of the oxidase. The lauryl maltoside concentration used to solubilize the enzyme did not affect the fluorescence of NATA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Brown adipose tissue of normal and cold-adapted adult rats has been investigated morphologically and cytochemically. In thin-sections catalase-positive particles appear as circular, oval or elongated profiles lying either as single particles or forming groups. Biochemical studies on peroxisomal enzymes show an increase of catalase activity to the tenfold amount after cold adaptation. The tissue is devoid of D-aminoacid oxidase and glycolate oxidase, while low activities of middle-chain-alpha-hydroxyacid oxidases could be detected. The catalase-positive particles were purified by differential and is lower than that of the liver peroxisomes. Enzymic investigations of the fractions render it probably that particles contain carnitine acetyltransferase, whereas they are lacking NAD-dependent glycerophosphate dehydrogenase. The pellets derived from the gradient centrifugation have been checked morphologically for purity. After performing DAB-cytochemistry for identification of the peroxidatic activity of catalase, most of the particles were shown to be structurally intact and homogeneously filled with reaction product.  相似文献   

9.
Measurements were made of energy-dependent quenching of atebrin fluorescence in membrane particles prepared from Escherichia coli grown anaerobically with glycerol as carbon source in the presence of either nitrate or fumarate. It is concluded that this technique can be used to study the functional organization of the anaerobic proton-translocating electron-transport chains that use nitrate or fumarate as terminal electron acceptor.  相似文献   

10.
Anionic amphiphiles such as sodium- and lithium dodecyl sulfate (SDS, LDS), or arachidonate (AA) initiate NADPH oxidase and proton channel activation in cell-free systems and intact neutrophils. To investigate whether these amphiphiles exert allosteric effects on cytochrome b, trisulfopyrenyl-labeled wheat germ agglutinin (Cascade Blue-wheat germ agglutinin, CCB-WGA) was used as an extrinsic fluorescence donor for resonance energy transfer (RET) to the intrinsic heme acceptors of detergent-solubilized cytochrome b. In solution, cytochrome b complexed with the CCB-WGA causing a rapid, saturable, carbohydrate-dependent quenching of up to approximately 55% of the steady-state fluorescence. Subsequent additions of SDS, LDS, or AA to typical cell-free oxidase assay concentrations completely relaxed the fluorescence quenching. The relaxation effects were specific, and not caused by dissociation of the CCB-WGA-cytochrome b complex or alterations in the spectral properties of the chromophores. In contrast, addition of the oxidase antagonist, arachidonate methyl ester, caused an opposite effect and was able to partially reverse the activator-induced relaxation. We conclude that the activators induce a cytochrome b conformation wherein the proximity or orientation between the hemes and the extrinsic CCB fluorescence donors has undergone a significant change. These events may be linked to NADPH oxidase assembly and activation or proton channel induction.  相似文献   

11.
1. During copper-limited growth of Candida utilis in continuous culture on a non-fermentable carbon and energy source there is a selective pressure favouring the emergence of variants that are less dependent on copper. 2. We describe the properties of such a variant that by-passes cytochrome oxidase (EC 1.9.3.1) by utilizing an alternative oxidase communicating with the respiratory chain at about the level of cytochrome b. 3. Both direct studies of isolated mitochondria and calculations based on growth parameters showed that only one of the normal three phosphorylation sites was active. This site was localized between NADH and the cytochromes. 4. Growth of the variant with copper-supplemented media resulted in the return of cytochrome oxidase but not the loss of the alternative oxidase. 5. The alternative oxidase is inhibited by substituted benzhydroxamic acids. 6. Submitochondrial particles from the variant did not exhibit any novel electron-paramagnetic-resonance-spectroscopy features at about g=2.0 either at 80 degrees K or 12 degrees K.  相似文献   

12.
Escherichia coli SASX76 does not form cytochromes unless supplemented with 5-aminolevulinic acid. It can grow anaerobically on glycerol and DL-glycerol 3-phosphate in the absence of 5-aminolevulinic acid with fumarate but not with nitrate as the terminal electron acceptor. Cytochrome-independent NADH oxidase, glycerol 3-phosphate- and NADH-fumarate oxidoreductase activities are induced by anaerobic growth on a glycerol-fumarate medium. The pathway of electrons from substrate to fumarate involves menaquinone. The NADH-fumarate oxidoreductase and cytochrome-independent NADH oxidase systems are inhibited by piericidin A, 2-heptyl-4-hydroxyquinoline N-oxide, and iron chelating agents. Both systems can energize the membrane particles as indicated by quenching of atebrin fluorescence.  相似文献   

13.
Using an auxotrophic mutant of Escherichia coli and the technique of quenching of atebrin fluorescence by membrane particles it has been shown that lipoic acid is not required for either respiration or ATP-driven proton tranlocation.  相似文献   

14.
Nonphosphorylating electron transport particles (ETP) prepared from beef heart mitochondrion were immobilized in agar gel. The immobilized ETP showed an oxidase activity to both NADH and succinate. The immobilized ETP was reusable. An electrochemical device for the determination of either NADH or succinate was assembled consisting of the membrane-bound ETP and an oxygen probe. The response to succinate was specifically inhibited by the addition of malonate.  相似文献   

15.
L Smith  H C Davies  M E Nava 《Biochemistry》1980,19(8):1613-1617
Adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and inorganic pyrophosphate partially inhibit the oxidation of exogenous cytochrome c by cytochrome c oxidase of submitochondrial particles (with or without detergent treatment) or by a purified preparation when it is assayed polarographically in buffers of nonbinding ions at pH 7.8. ATP is somewhat more inhibitory than ADP. The inhibition is never greater than 50%, and it is always less than an equal concentration of Mg2+ ions is present or when the assays are run at pH 6. In contrast, the effect of ATP, ADP, and pyrophosphate on oxidase assays run spectrophotometrically is a similar slight stimulation of the oxidase of submitochondrial particles treated with deoxycholate and little or no effect on purified oxidase. The reaction of the oxidase of submitochondrial particles with the endogenous cytochrome c is stimulated by the nucleotides, as is the reduced nicotinamide adenine dinucleotide (NADH) oxidase activity. The observations can be explained by binding of ATP, ADP, or pyrophosphate to cytochrome c so that the formation of an especially reactive combination of cytochrome c and cytochrome oxidase previously postulated [Smith, L., Davies, H. C., & Nava, M. E. (1979) Biochemistry 18, 3140] is prevented. The data give no evidence that respiration via cytochrome c oxidase is regulated physiologically by direct effects of ATP or ADP on its activity.  相似文献   

16.
Summary Brown adipose tissue of normal and cold-adapted adult rats has been investigated morphologically and cytochemically. In thin sections catalase-positive particles appear as circular, oval or elongated profiles lying either as single particles or forming groups. Biochemical studies on peroxisomal enzymes show an increase of catalase activity to the tenfold amount after cold adaptation. The tissue is devoid of D-aminoacid oxidase and glycolate oxidase, while low activities of middle-chain -hydroxyacid oxidases could be detected. The catalase-positive particles were purified by differential and isopycnic gradient centrifugation. The density of the particles (1.20 g/cm3) is lower than that of the liver peroxisomes. Enzymic investigations of the fractions render it probable that particles contain carnitine acetyltransferase, whereas they are lacking NAD-dependent glycerophosphate dehydrogenase. The pellets derived from the gradient centrifugation have been checked morphologically for purity. After performing DAB-cytochemistry for identification of the peroxidatic activity of catalase, most of the particles were shown to be structurally intact and homogeneously filled with reaction product.  相似文献   

17.
Safranine and the cyanine dye, 3',3'-dipropylthiadicarbocyanine (diSC3-5), were examined as membrane potential probes in cytochrome c oxidase vesicles. The spectra of the vesicle-associated dyes resemble those of the same dyes in organic solvents, indicating that safranine and diSC3-5 probably dissolve in a hydrophobic region of the proteoliposomal membrane. This binding of safranine to proteoliposomes occurs with a dye-membrane dissociation constant in the micromolar range. The binding of safranine and of diSC3-5 to liposomes or proteoliposomes is accompanied by fluorescence enhancement. This enhanced fluorescence is quenched by respiration or by the establishment of a K+ diffusion potential by valinomycin (negative interior). An optimal dye/lipid ratio was required to secure maximum fluorescence quenching of the dyes, whether that quenching was active or passive. Calibrations of both the safranine and the diSC3-5 responses with K+ diffusion potentials were also affected by the dye/lipid ratio. At lower dye/lipid ratios, the calibration curve was linear at higher potentials but deviated from linearity at lower potentials. The converse was true at higher dye/lipid ratios. The non-linearity of the calibration curve at higher potential was attributed to a 'saturation' effect; it may also involve increased permeability of proteoliposomal membrane to protons. Destacking of dye at the lower dye/lipid ratio was probably responsible for the non-linearity of the calibration curves at lower potentials. When all these effects are taken into account, the steady-state value of delta psi generated during maximal proteoliposomal respiration was calculated to be between 140 and 160 mV (interior negative) when measured with either safranine or diSC3-5. We conclude that quantitative estimates of delta psi values can be made using these probes in cytochrome c oxidase reconstituted proteoliposomes provided that appropriate precautions are taken.  相似文献   

18.
Insoluble concanavalin A complexes of glucose oxidase and amyloglucosidase have been prepared by mixing the glycoenzyme solutions with either pure concanavalin A or a buffer extract of jackbean meal. The complexes obtained using excess lectin exhibited relatively low specific activity compared with those obtained with low lectin concentration. The crosslinked complexes, however, exhibited relatively higher thermostability. In addition, glutaraldehyde treated concanavalin A-glucose oxidase complexes, especially those prepared using excess lectin, exhibited significantly broader pH-activity profiles compared to the soluble enzyme. Electrophoresis of the concanavalin A-glucose oxidase and concanavalin A-amyloglucosidase from pure lectin and from crude extract showed similar protein composition. The concanavalin A-amyloglucosidase complex was crosslinked to obtain relatively large (0.15–0.17 mm diameter) and homogeneous particles by treatment with 2% glutaraldehyde followed by homogenization. Glutaraldehyde treatment, however, caused a marked decrease in the retained activity of the particles, especially on starch. The crosslinked concanavalin A-amyloglucosidase preparations were, however, only slightly more stable against thermal denaturation than the soluble enzyme.  相似文献   

19.
A.P. Singh  P.D. Bragg 《BBA》1975,396(2):229-241
Escherichia coli SASX76 does not form cytochromes unless supplemented with 5-aminolevulinic acid. It can grow anaerobically on glycerol and dl-glycerol 3-phosphate in the absence of 5-aminolevulinic acid with fumarate but not with nitrate as the terminal electron acceptor. Cytochrome-independent NADH oxidase, glycerol 3-phosphate- and NADH-fumarate oxidoreductase activities are induced by anaerobic growth on a glycerol-fumarate medium. The pathway of electrons from substrate to fumarate involves menaquinone. The NADH-fumarate oxidoreductase and cytochrome-independent NADH oxidase systems are inhibited by piericidin A, 2-heptyl-4-hydroxyquinoline N-oxide, and iron chelating agents. Both systems can energize the membrane particles as indicated by quenching of atebrin fluorescence.  相似文献   

20.
C E Cooper  D Bruce  P Nicholls 《Biochemistry》1990,29(16):3859-3865
Absorbance changes in the anionic dye bis[3-phenyl-5-oxoisoxazol-4-yl]pentamethineoxonol (oxonol V) can be used to monitor the membrane potential of liposomes and cytochrome c containing cytochrome oxidase proteoliposomes (c-loaded COV). Diffusion potentials (positive inside the vesicles) cause an increase in the dye extinction, with a maximum at 640 nm. A similar increase is seen upon energization of internally facing cytochrome oxidase molecules in c-loaded COV. Both "passive" and "active" responses are only seen when the dye is fully bound to the vesicle membrane. Calibration curves using potassium or n-butyltriphenylphosphonium ion (BTPP+) diffusion potentials are linear up to 100 mV and pass through the origin. Diffusion potentials (positive inside) also cause an increase and red shift in the oxonol V fluorescence emission spectrum. However, potentials of the same sign induced by cytochrome oxidase turnover induce a large fluorescence quenching in c-loaded COV. A similar anomaly has been observed with submitochondrial particles [Smith, J. C., Russ, P., Cooperman, B. S., & Chance, B. (1976) Biochemistry 15, 5094-5105]. A model is proposed consistent with these responses. It is suggested that the dye molecules move further into the membrane phase upon energization, causing the absorbance increase. In the presence of active enzyme, anionic dye molecules are attracted to a positive dipole on each enzyme molecule, causing self-quenching of the fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号