首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Cadaverine links covalently to the D-glutamic acid residue of the peptidoglycan in Selenomonas ruminantium, a strictly anaerobic Gram-negative bacterium (Kamio, Y., Itoh, Y., and Terawaki, Y. (1981) J. Bacteriol. 146, 49-53). This report clarifies a physiological function of cadaverine in this organism by using DL-alpha-difluoromethyllysine, which had previously been shown to be a selective irreversible inhibitor of lysine decarboxylase of Mycoplasma dispar (P?s?, H., MaCann, P.P., Tanskanen, R., Bey, P., and Sjoerdsma, A. (1984) Biochem. Biophys. Res. Commun. 125, 205-210). DL-alpha-Difluoromethyllysine is now shown to be a potent and irreversible inhibitor of lysine decarboxylase of S. ruminantium in vitro; however, it did not inhibit the transfer of cadaverine to the alpha-carboxyl group of the D-glutamic acid residue of the peptidoglycan. DL-alpha-Difluoromethyllysine at 5 mM markedly inhibited the growth of the bacterium and caused rapid cell lysis. Immediately before the cell lysis, almost all cells became swollen, and such cells showed a loosened envelope structure when studied by electron microscopy. The peptidoglycan prepared from the DL-alpha-difluoromethyllysine-treated cells did not have covalently linked cadaverine. The growth inhibition by DL-alpha-difluoromethyllysine was completely reversed by adding cadaverine (1 mM) to the medium. Furthermore, the exogenous cadaverine was exclusively incorporated into the peptidoglycan in the presence of DL-alpha-difluoromethyllysine (5 mM), and a normal peptidoglycan was synthesized. The cell lysis and the formation of an abnormal cell structure were completely prevented by cadaverine added to the medium. We conclude that cadaverine covalently linked to the peptidoglycan in S. ruminantium is an essential constituent of the peptidoglycan and is required for cell surface integrity and the normal growth of S. ruminantium.  相似文献   

2.
In Selenomonas ruminantium, a strictly anaerobic and gram-negative bacterium, cadaverine covalently linked to the peptidoglycan is required for the interaction between the peptidoglycan and the S-layer homologous (SLH) domain of the major outer membrane protein Mep45. Here, using a series of diamines with a general structure of NH(3)(+)(CH(2))(n)NH(3)(+) (n = 3 to 6), we found that cadaverine (n = 5) specifically serves as the most efficient constituent of the peptidoglycan in acquiring the high resistance of the cell to external damage agents and is required for effective interaction between the SLH domain of Mep45 and the peptidoglycan, facilitating the correct anchoring of the outer membrane to the peptidoglycan.  相似文献   

3.
Y Kamio 《Journal of bacteriology》1987,169(10):4837-4840
Putrescine and cadaverine are essential constituents of the peptidoglycan of Veillonella alcalescens, Veillonella parvula, and Selenomonas ruminantium and are necessary for the growth of these organisms (Y. Kamio and K. Nakamura, J. Bacteriol. 169:2881-2884, 1987, and Y. Kamio, H. P?s?, Y. Terawaki, and L. Paulin, J. Biol. Chem. 261:6585-6589, 1986). In this study, the structural specificity of the diamine requirement for normal cell growth of these bacteria was examined by using a series of diamines with a general structure of NH3+ X (CH2)n X NH3+. Diaminohexane (n = 6) which was incorporated into the peptidoglycan was as effective as putrescine (n = 4) and cadaverine (n = 5) for normal cell growth. However, diaminopropane (n = 3) and diaminoheptane (n = 7) were less effective for growth than diaminohexane, although they were incorporated into the peptidoglycan to the same extent.  相似文献   

4.
The peptidoglycan of Selenomonas ruminantium, a strictly anaerobic bacterium, contains cadaverine (Y. Kamio, Y. Itoh, Y. Terawaki, and T. Kusano, J. Bacteriol. 145:122-128, 1981). This report describes the chemical structure of the peptidoglycan of this bacterium. The [14C]cadaverine-labeled peptidoglycan was degraded with the lytic enzymes prepared from Streptomyces albus G into three small fragments including a major fragment (band A compound). Bank A compound was composed of L-alanine, D-glutamic acid, meso-diaminopimelic acid, D-alanine, and cadaverine in the molar ratio 0.98:1.0:1.0:0.98:0.97. Diaminopimelic acid, L-alanine, and cadaverine were N-terminal residues in band A compound. When the [14C]cadaverine-labeled band A compound was subjected to partial acid hydrolysis, two peptide fragments were obtained. One of them consisted of diaminopimelic acid and D-alanine; diaminopimelic acid was the N-terminal amino acid, and the other fragment was composed of L-alanine, D-glutamic acid, and cadaverine, of which L-alanine and cadaverine were N-terminal. These results lead us to conclude that the primary peptide structure of band A compound is L-alanyl-D-glutamyl-meso-diaminopimelyl-D-alanine and that cadaverine links covalently to the D-glutamic acid residue.  相似文献   

5.
The wild type of Selenomonas ruminantium subsp. lactilytica, which is a strictly anaerobic, Gram-negative bacterium isolated from sheep rumen, requires one of the normal saturated volatile fatty acids with 3 to 10 carbon atoms for its growth in a glucose medium; however, no such obligate requirement of fatty acid is observed when the cells are grown in a lactate medium. This bacterium is characterized by a unique structure of the cell envelope and a novel lysine decarboxylase and its regulatory protein. In the first part of this article, we will refer to the chemical structure of phospholipid and lipopolysaccharide in the cell membranes of this bacterium compared with that from the general Gram-negative bacteria for understanding their biological functions. S. ruminantium has neither free nor bound forms of Braun lipoprotein which plays an important role of the maintenance of the structural integrity of the cell surface in general Gram-negative bacteria. However, S. ruminantium has cadaverine, which links covalently to the peptidoglycan as a pivotal constituent for the cell division. In the second part of this article, we will refer to the chemical structure of the cadaverine-containing peptidoglycan, its biosynthesis, and the biological function. In the third part of this article, we will depict the molecular cloning of the genes encoding S. ruminanitum lysine decarboxylase (LDC) and its regulatory protein of 22-kDa (22-kDa protein; P22) which has similar characteristics to that of antizyme of ornithine decarboxylase in eukaryotic cells, and the molecular dissection of these proteins for understanding the regulation of cadaverine biosynthesis. Finally, we will illustrate a proposed structure of the cell envelope, a processes of biosynthesis of the cadaverine-containing peptidoglycan layer, and the LDC degradation mechanism in S. ruminantium, on the basis of the analyses of the cell envelope components, the results from the in vitro experiments on the biosynthesis of the peptidoglycan layer, and the current status of the knowledge on LDC and P22 in this organism.  相似文献   

6.
7.
Cytoplasmic reserve polysaccharide of Selenomonas ruminantium.   总被引:8,自引:4,他引:4       下载免费PDF全文
Selenomonas ruminantium accumulated large quantities of intracellular polysaccharide when grown in simple defined medium in a chemostat, particularly at low dilution rate under NH3 limitation when the carbohydrate content of the cells was greater than 40% of the dry weight. This polysaccharide was used as a source of energy under conditions of energy starvation. Abundant, densely staining cytoplasmic granules were observed by electron microscopy in sections stained by the periodic acid-thiocarbohydrazide-osmium technique. The polysaccharide was extracted in 30% KOH followed by precipitation with 60% ethanol and was found to be a glucose homopolymer. Sepharose 4B gel filtration and iodine-complex spectroscopy showed that the polysaccharide was of the glycogen type with a molecular weight of 5 X 10(5) to greater than 20 X 10(5) and an average chain length of 12 glucose residues.  相似文献   

8.
Diphenyl, o-phenylphenol and thiabendazole were analyzed in citrus fruits. The peel and edible parts were separately homogenized. These fungicides were extracted with dichloromethane from the homogenate, and they were fractionated with Sephadex LH-20 columns. Gas chromatography was used to determine the presence of these fungicides. The fungicides found in edible parts of citrus fruits were confirmed by gas chromatography-mass spectrometry.

Diphenyl, o-phenylphenol and thiabendazole were detected in imported grapefruits, lemons and oranges. Almost all fungicides were found in the peel. The concentrations of the three fungicides in the edible parts were very low. Some samples contained all three fungicides in the edible parts.  相似文献   

9.
Crude protein extract from a recently isolated ruminal bacterium identified as Selenomonas ruminantium subsp. lactilytica specifically cleaved DNA. This ability was due to the presence of two site-specific restriction endonucleases. Srl I, a Nae I schizomer, recognizes the 5'-GCCGGC-3' sequence. Srl II, a Nsi I schizomer, recognizes 5'-ATGCAT-3'.  相似文献   

10.
Abstract Selenomonas ruminantium (strain I10) isolated from the ovine rumen showed considerable morphological variation and lack of motility when cultured in a phosphate-limited chemostat in the presence of high levels of glucose (55.5 mM). Transmission electron microscopy showed that some of these variants were capable of producing daughter cells with a typical selenomonad morphology but lacking flagella.
The reduction of the levels of glucose (27.8 mM) in the media caused the numbers of cells exhibiting variation to decrease, with a corresponding increase in motile cells possessing a typical selenomonad morphology. The removal of trypticase from the media had no effect on the morphology or motility of the cells.
During the initial stages of changeover to reduced glucose levels variants could be found in the chemostat which were flagellate. The flagellae were consistently attached to a concave section of the cells.  相似文献   

11.
A polysaccharide was found to be covalently linked to the peptidoglycan of the unicellular cyanobacterium Synechocystis sp. strain PCC6714 via phosphodiester bonds. It could be cleaved from the peptidoglycan-polysaccharide (PG-PS) complex by hydrofluoric acid (HF) treatment in the cold (48% HF, 0 degrees C, 48 h) yielding a pure, HF-insoluble peptidoglycan fraction and an HF-soluble polysaccharide fraction. The PG-PS complex was isolated from the Triton X-100-insoluble cell wall fraction by hot sodium dodecyl sulfate treatment and digestion with proteases. Digestion of the complex with N-acetylmuramidase released the glycopeptide-linked polysaccharide, which was further purified by dialysis and gel filtration on Sephadex G-50 and G-200. The polysaccharide consisted of glucosamine, mannosamine, galactosamine, mannose, and glucose and had a molecular weight of 25,000 to 30,000. Muramic acid-6-phosphate was identified as the binding site of the covalently linked, nonphosphorylated polysaccharide as revealed by chemical analysis of linkage fragments of the PG-PS complex.  相似文献   

12.
A borate-containing pectin was solubilized from sugar beet (Beta vulgaris L. ) cell walls by treatment with 0.5 M imidazole, pH 7. The molecular weight of the pectin was reduced when the borate ester was hydrolyzed by treatment with 1 N HCl. Treatment of the acid-treated pectin with boric acid in the presence of Pb(2+) gave a product whose molecular weight distribution was similar to the imidazole-soluble pectin. The imidazole-soluble pectin was saponified and then digested with endo- and exo-polygalacturonases. These treatments shifted the boron peak at the high molecular weight region to the low molecular weight (10 kDa), which corresponds to rhamnogalacturonan II-borate ester cross-linked dimer (dRG-II-B). The treatment also generated rhamnogalacturonan I (RG-I), dRG-II-B, monomeric rhamnogalacturonan II and galacturonic acid. These results show that imidazole solubilizes a high molecular weight borate-containing pectic complex composed of homogalacturonan-rhamnogalacturonan II and RG-I. Our data suggest that borate esters formed between rhamnogalacturonan II molecules cross-link the macromolecular pectin.  相似文献   

13.
We report here the isolation and identification of the RNA specifically immunoprecipitated and covalently linked to the tumor suppressor gene product p53. After treatment with proteinase K, the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) band of p53 yields a single, discrete 157-nucleotide RNA, which was cloned, sequenced, and identified as 5.8S rRNA. 5.8S rRNA was obtained only after proteolysis of the p53 SDS-PAGE band. Free 5.8S rRNA did not comigrate with p53 in SDS-PAGE. This RNA was only immunoprecipitated from cells containing p53. Protein-free RNA obtained by proteolysis of the p53 band hybridized to the single-stranded DNA vector containing the antisense sequence of 5.8S rRNA. The covalence of the p53-5.8S rRNA linkage was demonstrated by the following findings: (i) p53 and the linked 5.8S rRNA comigrated in SDS-PAGE; (ii) only after treatment of the p53-RNA complex with proteinase K did the 5.8S rRNA migrate differently from p53-linked 5.8S rRNA; and (iii) this isolated RNA was found linked to phosphoserine, presumably at the 5' end. Covalent linkage to the single, specific RNA suggests that p53 may be involved in regulating the expression or function of 5.8S rRNA.  相似文献   

14.
Monoclonal antibodies were raised against whole cells of two different strains of Selenomonas ruminantium and tested for specificity and sensitivity in immunofluorescence and enzyme-linked immunosorbent assay procedures. Species-specific and strain-specific antibodies were identified, and reactive antigens were demonstrated in solubilized cell wall extracts of S. ruminantium. A monoclonal antibody-based solid-phase immunoassay was established to quantify S. ruminantium in cultures or samples from the rumen, and this had a sensitivity of 0.01 to 0.02% from 10(7) cells. For at least one strain, the extent of antibody reaction varied depending upon the stage of bacterial growth. Antigen characterization by immunoblotting shows that monoclonal antibodies raised against two different strains of S. ruminantium reacted with the same antigen on each strain. For one strain, an additional antigen reacted with both monoclonal antibodies. In the appropriate assay, these monoclonal antibodies may have advantages over gene probes, both in speed and sensitivity, for bacterial quantification studies.  相似文献   

15.
Selenomonas ruminantium HD4 does not use the phosphoenolpyruvate phosphotransferase system to transport xylose (S. A. Martin and J. B. Russell, J. Gen. Microbiol. 134:819-827, 1988). Xylose uptake by whole cells of S. ruminantium HD4 was inducible. Uptake was unaffected by monensin or lasalocid, while oxygen, o-phenanthroline, and HgCl2 were potent inhibitors. Menadione, antimycin A, and KCN had little effect on uptake, and acriflavine inhibited uptake by 23%. Sodium fluoride decreased xylose uptake by 10%, while N,N'-dicyclohexylcarbodiimide decreased uptake by 31%. Sodium arsenate was a strong inhibitor (83%), and these results suggest the involvement of a high-energy phosphate compound and possibly a binding protein in xylose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and SF6847 inhibited xylose uptake by 88, 82, and 43%, respectively. The cations Na+ and K+ did not stimulate xylose uptake. The kinetics of xylose uptake were nonlinear, and it appeared that more than one uptake mechanism may be involved or that two proteins (i.e., a binding protein and permease protein) with different affinities for xylose were present. Excess (10 mM) glucose, sucrose, or maltose decreased xylose uptake less than 40%. Uptake was unaffected at extracellular pH values between 6.0 and 8.0, while pH values of 5.0 and 4.0 decreased uptake 28 and 24%, respectively. The phenolic monomers p-coumaric acid and vanillin inhibited growth on xylose and xylose uptake more than ferulic acid did. The predominant end products resulting from the fermentation of xylose were lactate (7.5 mM), acetate (4.4 mM), and propionate (5.1 nM), and the Yxylose was 24.1 g/mol.  相似文献   

16.
Selenomonas ruminantium was found to possess two pathways for NH4+ assimilation that resulted in net glutamate synthesis. One pathway fixed NH4+ through the action of an NADPH-linked glutamate dehydrogenase (GDH). Maximal GDH activity required KCl (about 0.48 M), but a variety of monovalent salts could replace KCl. Complete substrate saturation of the enzyme by NH4+ did not occur, and apparent Km values of 6.7 and 23 mM were estimated. Also, an NADH-linked GDH activity was observed but was not stimulated by KCl. Cells grown in media containing non-growth-rate-limiting concentrations of NH4+ had the highest levels of GDH activity. The second pathway fixed NH4+ into the amide of glutamine by an ATP-dependent glutamine synthetase (GS). The GS did not display gamma-glutamyl transferase activity, and no evidence for an adenylylation/deadenylylation control mechanism was detected. GS activity was highest in cells grown under nitrogen limitation. Net glutamate synthesis from glutamine was effected by glutamate synthase activity (GOGAT). The GOGAT activity was reductant dependent, and maximal activity occurred with dithionite-reduced methyl viologen as the source of electrons, although NADPH or NADH could partially replace this artificial donor system. Flavin adenine dinucleotide, flavin mononucleotide, or ferredoxin could not replace methyl viologen. GOGAT activity was maximal in cells grown with NH4+ as sole nitrogen source and decreased in media containing Casamino Acids.  相似文献   

17.
Selenomonas ruminantium is an obligate anaerobe that is very important for the provision of vitamin B12 to ruminants, which are particularly dependent upon this cofactor. One important use for vitamin B12 in anaerobic bacteria is for the utilization of glycerol as carbon source. A new flavoprotein has been found expressed by Escherichia coli from a plasmid created as part of a gene library of S. ruminantium. The 2.5-kb fragment of chromosomal DNA responsible for protein expression contains parts of two operons. Only one polypeptide (the flavoprotein) encoded by the S. ruminantium DNA is produced in E. coli in large amounts. The gene for the flavoprotein has been identified and is probably transcribed as part of an operon involved in glycerol metabolism in S. ruminantium. The flavoprotein has been purified and its molecular properties have been examined. Sequence analysis showed that this protein is a divergent member of the family of nitroreductases. Pure protein is a homodimer with a molecular weight of 44,500, containing one molecule of FMN per dimer. Like other nitroreductases, this protein forms a complex with pyridine nucleotide (NADPH), but unlike other nitroreductases, it fails to be reduced in this complex at a biologically significant rate. It has none of the common catalytic properties of other members of the nitroreductase family.  相似文献   

18.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

19.
The plasmid content of six different isolates of Selenomonas ruminantium from the rumen of sheep, cows or goats was examined by electron microscopy. In addition to small plasmids (< 12 kb) studied previously, all six strains contained at least one plasmid larger than 20 kb. Plasmid sizes of 1·4, 2·1, 2·4, 5·0, 6·2, 20·4, 20·8, 22·7, 23·3, 29·3, 30·7, 34·4 and 42·6 kb were estimated from contour length measurements. DNA-DNA hybridization experiments revealed homology among the large plasmids from five strains, while the 20·8 kb plasmid from a sixth isolate showed no apparent relationship with the plasmids of the other strains.  相似文献   

20.
Lactate utilization by Selenomonas ruminantium is stimulated in the presence of malate. Because little information is available describing lactate-plus-malate utilization by this organism, the objective of this study was to evaluate factors affecting utilization of these two organic acids by two strains of S. ruminantium. When S. ruminantium HD4 and H18 were grown in batch culture on DL-lactate and DL-malate, both strains coutilized both organic acids for the initial 20 to 24 h of incubation and acetate, propionate, and succinate accumulated. However, when malate and succinate concentrations reached 7 mM, malate utilization ceased, and with strain H18, there was a complete cessation of DL-lactate utilization. Malate utilization by both strains was also inhibited in the presence of glucose. S. ruminantium HD4 was unable to grow on 6 mM DL-lactate at extracellular pH 5.5 in continuous culture (dilution rate, 0.05 h-1) and washed out of the culture vessel. Addition of 8 mM DL-malate to the medium prevented washout on 6 mM DL-lactate at pH 5.5 and resulted in succinate accumulation. Addition of malate also increased bacterial protein, acetate, and propionate concentrations in continuous culture. These results suggest that 8 mM DL-malate enhances the ability of strain HD4 to grow on 6 mM DL-lactate at extracellular pH 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号