首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-dependent membrane fusion reaction mediated by the E1 envelope protein. Fusion is regulated by the interaction of E1 with the receptor-binding protein E2. E2 is synthesized as a precursor termed "p62," which forms a stable heterodimer with E1 and is processed late in the secretory pathway by a cellular furin-like protease. Once processing to E2 occurs, the E1/E2 heterodimer is destabilized so that it is more readily dissociated by exposure to low pH, allowing fusion and infection. We have used FD11 cells, a furin-deficient CHO cell line, to characterize the processing of p62 and its role in the control of virus fusion and infection. p62 was not cleaved in FD11 cells and cleavage was restored in FD11 cell transfectants expressing human furin. Studies of unprocessed virus produced in FD11 cells (wt/p62) demonstrated that the p62 protein was efficiently cleaved by purified furin in vitro, without requiring prior exposure to low pH. wt/p62 virus particles were also processed during their endocytic uptake in furin-containing cells, resulting in more efficient virus infection. wt/p62 virus was compared with mutant L, in which p62 cleavage was blocked by mutation of the furin-recognition motif. wt/p62 and mutant L had similar fusion properties, requiring a much lower pH than control virus to trigger fusion and fusogenic E1 conformational changes. However, the in vivo infectivity of mutant L was more strongly inhibited than that of wt/p62, due to additional effects of the mutation on virus-cell binding.  相似文献   

2.
The Semliki Forest virus spike protein has a potent membrane fusion activity which is activated in vivo by the low pH of endocytic vacuoles. The spike protein is composed of two transmembrane subunits, E1 and E2, plus E3, a peripheral polypeptide. Acid-induced conformational changes in the E1 or E2 subunits were analyzed by using monoclonal antibodies specific for the acid-treated spike protein. E1 and E2 reacted with the antibodies after treatment of wild-type or mutant virus at the pH of fusion. The E1 conformational change resembled fusion in its requirement for both low pH and cholesterol. Pulse-chase analysis and intracellular pH treatment were then used to determine the ability of the newly synthesized spike to undergo acid-induced conformational changes. p62, the precursor to E2 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis. In contrast, a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form. E1 maturation occurred fairly late in the exocytic pathway, after the virus spike had passed the medial Golgi but before incorporation of the spike into a new virus particle.  相似文献   

3.
The precursor protein p62 of the prototype alphavirus Semliki Forest virus (SFV) undergoes during transport to the cell surface a proteolytic cleavage to form the mature envelope glycoprotein E2. To investigate the biological significance of this cleavage event, single amino acid substitutions were introduced at the cleavages site through mutagenesis of cDNA corresponding to the structural region of the SFV genome. The phenotypes of the cleavage site mutants were studied in BHK cells by using recombinant vaccinia virus vectors. Nonconservative substitutions completely abolished p62 cleavage. Uncleaved p62 was transported with normal kinetics to the cell surface, where it became accessible to low concentrations of exogenous trypsin. The proteolytic cleavage of envelope glycoprotein precursors has been shown to activate the membrane fusion potential of viral spikes in several virus families. Here we demonstrate that the fusion function of the SFV spike is activated by the cleavage of p62. Cleavage-deficient p62 expressed at the cell surface did not function in low-pH-triggered (pH 5.5) cell-cell membrane fusion; however, cleavage of the mutated p62 with exogenous trypsin restored the fusion function. We discuss a model for SFV assembly and fusion where p62 cleavage plays a crucial role in the stability of the multimeric association of the viral envelope glycoproteins.  相似文献   

4.
The envelope of the Semliki Forest virus (SFV) contains two transmembrane proteins, E2 and E1, in a heterodimeric complex. The E2 subunit is initially synthesized as a precursor protein p62, which is proteolytically processed to the mature E2 form before virus budding at the plasma membrane. The p62 (E2) protein mediates binding of the heterodimer to the nucleocapsid during virus budding, whereas E1 carries the entry functions of the virus, that is, cell binding and low pH-mediated membrane fusion activity. We have investigated the significance of the cleavage event for the maturation and entry of the virus. To express SFV with an uncleaved p62 phenotype, BHK-21 cells were transfected by electroporation with infectious viral RNA transcribed from a full-length SFV cDNA clone in which the p62 cleavage site had been changed. The uncleaved p62E1 heterodimer was found to be used for the formation of virus particles with an efficiency comparable to the wild type E2E1 form. However, in contrast to the wild type virus, the mutant virus was virtually noninfectious. Noninfectivity resulted from impaired uptake into cells, as well as from the inability of the virus to promote membrane fusion in the mildly acidic conditions of the endosome. This inability could be reversed by mild trypsin treatment, which converted the viral p62E1 form into the mature E2E1 form, or by treating the virus with a pH 4.5 wash, which in contrast to the more mild pH conditions of endosomes, effectively disrupted the p62E1 subunit association. We conclude that the p62 cleavage is not needed for virus budding, but regulates entry functions of the E1 subunit by controlling the heterodimer stability in acidic conditions.  相似文献   

5.
Spike protein oligomerization control of Semliki Forest virus fusion.   总被引:11,自引:5,他引:6       下载免费PDF全文
M Lobigs  J M Wahlberg    H Garoff 《Journal of virology》1990,64(10):5214-5218
We have recently shown, using cleavage-deficient mutants of the p62-E1 membrane protein complex of Semliki Forest virus that p62 cleavage to E2 is necessary for the activation of the fusion function of the complex at pH 5.8 (a pH optimal for virus fusion) (M. Lobigs and H. Garoff, J. Virol. 64:1233-1240, 1990). In this study, we show that the mutant precursor complexes can be induced to activate membrane fusion when treated with more acidic buffers (pH 5.0 and 4.5), which also appear to dissociate most of the p62-E1 complexes and change the conformation of the E1 subunit (the supposed fusion protein of Semliki Forest virus into a form which is resistant to trypsin digestion. These data suggest that p62 cleavage is not essential for membrane fusion per se but that the crucial event activating this process seems to be the apparent dissociation of the heterodimer, which in turn is facilitated by the spike precursor cleavage.  相似文献   

6.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

7.
Semliki Forest virus (SFV), an enveloped alphavirus, is a well-characterized paradigm for viruses that infect cells via endocytic uptake and low-pH-triggered fusion. The SFV spike protein is composed of a dimer of E1 and E2 transmembrane subunits, which dissociate upon exposure to low pH, liberating E2 and the fusogenic E1 subunit to undergo independent conformational changes. SFV fusion and infection are blocked by agents such as ammonium chloride, which act by raising the pH in the endosome and inhibiting the low-pH-induced conformational changes in the SFV spike protein. We have previously isolated an SFV mutant, fus-1, that requires more acidic pH to trigger its fusion activity and is therefore more sensitive to inhibition by ammonium chloride. The acid shift in the fusion activity of fus-1 was here shown to be due to a more acidic pH threshold for the initial dissociation of the fus-1 spike dimer, thereby resulting in a more acidic pH requirement for the subsequent conformational changes in both fus-1 E1 and fus-1 E2. Sequence analysis demonstrated that the fus-1 phenotype was due to a mutation in the E2 spike subunit, threonine 12 to isoleucine. fus-1 revertants that have regained the parental fusion phenotype and ammonium chloride sensitivity were shown to have also regained E2 threonine 12. Our results identify a region of the SFV E2 spike protein subunit that regulates the pH dependence of E1-catalyzed fusion by controlling the dissociation of the E1/E2 dimer.  相似文献   

8.
In alphaviruses, here represented by Semliki Forest virus, infection requires an acid-responsive spike configuration to facilitate membrane fusion. The creation of this relies on the chaperone function of glycoprotein E2 precursor (p62) and its maturation cleavage into the small external E3 and the membrane-anchored E2 glycoproteins. To reveal how the E3 domain of p62 exerts its control of spike functions, we determine the structure of a p62 cleavage-impaired mutant virus particle (SQL) by electron cryomicroscopy. A comparison with the earlier solved wild type virus structure reveals that the E3 domain of p62(SQL) forms a bulky side protrusion in the spike head region. This establishes a gripper over part of domain II of the fusion protein, with a cotter-like connection downward to a hydrophobic cluster in its central beta-sheet. This finding reevaluates the role of the precursor from being only a provider of a shield over the fusion loop to a structural playmate in formation of the fusogenic architecture.  相似文献   

9.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

10.
The Semliki Forest virus (SFV) glycoprotein precursor p62 is processed to the E2 and E3 during the transport from the trans-Golgi network (TGN) to the cell surface. We have studied the regulation of the membrane fusion machinery (Rab/N-ethylmaleimide (NEM)-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)-SNAP receptor) in this processing. Activation of the disassembly of this complex with recombinant NSF stimulated the cleavage of p62 in permeabilized cells. Inactivation of NSF with a mutant alpha-SNAP(L294A) or NEM treatment inhibited processing of p62. Rab GDP dissociation inhibitor inhibited the cleavage. Inactivation of NSF blocks the transport of SFV glycoproteins and vesicular stomatitis virus G-glycoprotein from the TGN membranes to the cell surface. The results support the conclusion that inhibition of membrane fusion arrests p62 in the TGN and prevents its processing by furin.  相似文献   

11.
Alphaviruses are taken up into the endosome of the cell, where acidic conditions activate the spikes for membrane fusion. This involves dissociation of the three E2-E1 heterodimers of the spike and E1 interaction with the target membrane as a homotrimer. The biosynthesis of the heterodimer as a pH-resistant p62-E1 precursor appeared to solve the problem of premature activation in the late and acidic parts of the biosynthetic transport pathway in the cell. However, p62 cleavage into E2 and E3 by furin occurs before the spike has left the acidic compartments, accentuating the problem. In this work, we used a furin-resistant Semliki Forest virus (SFV) mutant, SFV(SQL), to study the role of E3 in spike activation. The cleavage was reconstituted with proteinase K in vitro using free virus or spikes on SFV(SQL)-infected cells. We found that E3 association with the spikes was pH dependent, requiring acidic conditions, and that the bound E3 suppressed spike activation. This was shown in an in vitro spike activation assay monitoring E1 trimer formation with liposomes and a fusion-from-within assay with infected cells. Furthermore, the wild type, SFV(wt), was found to bind significant amounts of E3, especially if produced in dense cultures, which lowered the pH of the culture medium. This E3 also suppressed spike activation. The results suggest that furin-cleaved E3 continues to protect the spike from premature activation in acidic compartments of the cell and that its release in the neutral extracellular space primes the spike for low-pH activation.  相似文献   

12.
Semliki Forest virus (SFV), an alphavirus, infects cells via a low pH-triggered membrane fusion reaction that takes place within the cellular endocytic pathway. Fusion is mediated by the heterotrimeric virus spike protein, which undergoes conformational changes upon exposure to low pH. The SFV E1 spike subunit contains a hydrophobic domain of 23 amino acids that is highly conserved among alphaviruses. This region is also homologous to a domain of the rotavirus outer capsid protein VP4. Mutagenesis of an SFV spike protein cDNA was used to evaluate the role of the E1 domain in membrane fusion. Mutant spike proteins were expressed in COS cells and assayed for cell-cell fusion activity. Four mutant phenotypes were identified: (i) substitution of Gln for Lys-79 or Leu for Met-88 had no effect on spike protein fusion activity; (ii) substitution of Ala for Asp-75, Ala for Gly-83, or Ala for Gly-91 shifted the pH threshold of fusion to a more acidic range; (iii) mutation of Pro-86 to Asp, Gly-91 to Pro, or deletion of amino acids 83 to 92 resulted in retention of the E1 subunit within the endoplasmic reticulum; and (iv) substitution of Asp for Gly-91 completely blocked cell-cell fusion activity without affecting spike protein assembly or transport. These results argue that the conserved hydrophobic domain of SFV E1 is closely involved in membrane fusion and suggest that the homologous region in rotavirus VP4 may be involved in the entry pathway of this nonenveloped virus.  相似文献   

13.
The E2 spike glycoprotein of Semliki Forest virus is produced as a p62 precursor protein, which is cleaved by host proteases to its mature form, E2. Cleavage is not necessary for particle formation or release but is necessary for infectivity. Previous results had shown that phenotypic revertants of cleavage-deficient p62 mutants are generated, and here we show that these may contain second-site suppressor mutations in the vicinity of the cleavage site. These hot-spot sites were mutated to abolish the generation of such suppressor mutations; however, secondary mutations in another distant domain of the E2 protein appeared instead, all of which still caused cleavage-deficient mutations. Such mutants grew very poorly and were inefficient in virus entry and release. The mutated sites define domains of the spike protein which probably interact to regulate its structure and function. Because of their highly attenuated phenotype and the lower probability of reversion, the new mutations close to the cleavage site were used to make new helper vectors for packaging of recombinant RNA into infectious particles, thus increasing further the biosafety of the vector system based on the Semliki Forest virus replicon.  相似文献   

14.
When Semliki Forest virus temperature-sensitive mutant ts-3 was grown at the restrictive temperature an aberrant nascent cleavage of the 130,000-dalton structural polyprotein took place relatively frequently. This cleavage yielded an abnormal 86,000-dalton fusion protein (p86) consisting of the amino-terminal capsid protein linked to the amino acid sequences of envelope protein p62 (a precursor of E3 and E2). The other cleavage product was the carboxy-terminal envelope protein E1. p86 was not glycosylated and was sensitive to the action of protease in the microsomal fraction, whereas E1 was glycosylated and protected from proteases, indicating that it had been segregated into the cysternal side of the microsomal vesicles. All attempts to show the E1 protein at the cell surface have failed so far, suggesting that it remains associated with intracellular membranes. When ts-3-infected cells labeled at the restrictive temperature were shifted to the permissive temperature the only labeled protein released with the virus particles was E1, indicating that E1, synthesized at the restrictive temperature, was competent to participate in the virus assembly. These results suggest strongly that there are two separate signal sequences for the envelope proteins of Semliki Forest virus. One follows the capsid protein as shown previously, and the other is for the carboxy-terminal E1. Even if the insertion of the amino-terminal envelope protein (p62) fails due to a cleavage defect, the other signal sequence can operate independently to guide the E1 through the endoplasmic reticulum membrane.  相似文献   

15.
Cholesterol is required in the exit pathway of Semliki Forest virus   总被引:5,自引:1,他引:4       下载免费PDF全文
The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction triggered by low pH. For fusion to occur cholesterol is required in the target membrane, as demonstrated both in in vitro fusion assays and in vivo for virus infection of a host cell. In this paper we examine the role of cholesterol in postfusion events in the SFV life cycle. Cholesterol-depleted insect cells were transfected with SFV RNA or infected at very high multiplicities to circumvent the fusion block caused by the absence of cholesterol. Under these conditions, the viral spike proteins were synthesized and transported to the site of p62 cleavage with normal kinetics. Surprisingly, the subsequent exit of virus particles was dramatically slowed compared to cholesterol-containing cells. The inhibition of virus production could be reversed by the addition of cholesterol to depleted cells. In contrast to results with SFV, no cholesterol requirement for virus exit was observed for the production of either the unrelated vesicular stomatitis virus or a cholesterol-independent SFV fusion mutant. Thus, cholesterol was only critical in the exit pathway of viruses that also require cholesterol for fusion. These results demonstrate a specific and unexpected lipid requirement in virus exit, and suggest that in addition to its role in fusion, cholesterol is involved in the assembly or budding of SFV.  相似文献   

16.
The spike glycoprotein E2 of Sindbis virus (SIN) is synthesized in the infected cell as a PE2 precursor protein, which matures through cleavage by a cellular furin-like protease. Previous work has shown that SIN mutants impaired in PE2 cleavage are noninfectious on BHK-21 cells, the block in infection being localized at a step after virus-receptor interaction but prior to RNA replication. Here, we studied the membrane fusion properties of SIN PE2 cleavage mutants and observed that these viruses are impaired in their ability to form an E1 homotrimer and to fuse with liposomes at a mildly acidic pH. The block in spike rearrangement and fusion could be overridden by exposure of the mutant viruses to very low pH (<4.5). Cleavage mutants with second-site resuscitating mutations in PE2 were highly infectious for BHK-21 cells. The ability of these viruses to form E1 homotrimers and to fuse at a mildly acidic pH was completely restored despite a sustained lack of PE2 cleavage.  相似文献   

17.
Lu YE  Eng CH  Shome SG  Kielian M 《Journal of virology》2001,75(17):8329-8339
During infection of host cells, a number of enveloped animal viruses are known to produce soluble forms of viral membrane glycoproteins lacking the transmembrane domain. The roles of such soluble glycoproteins in viral life cycles are incompletely understood, but in several cases they are believed to modulate host immune response and viral pathogenesis. Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells through low-pH-dependent fusion and buds from the plasma membrane. Fusion is mediated by the E1 subunit of the SFV spike protein. Previous studies described the in vivo generation of E1s, a truncated soluble form of E1, under conditions in which budding is inhibited in mammalian host cells. We have here examined the properties of E1s generation and the biological activity of E1s. E1s cleavage required spike protein transport out of the endoplasmic reticulum and was independent of virus infection. Cell surface E1 efficiently acted as a precursor for E1s. E1s generation was strongly pH dependent in BHK cells, with optimal cleavage at a pH of < or =7.0, conditions that inhibited the budding of SFV but not the budding of the rhabdovirus vesicular stomatitis virus. The pH dependence of E1s production and SFV budding was unaffected by the stability of the spike protein dimer but was a function of the host cell. Similar to the intact virus and in vitro-generated E1 ectodomain, treatment of E1s at low pH in the presence of target membranes triggered specific acid-dependent conformational changes. Thus, under a variety of conditions, SFV-infected cells can produce a soluble form of E1 that is biologically active.  相似文献   

18.
Proteolytic cleavage of the Hendra virus fusion (F) protein results in the formation of disulfide-linked F1 and F2 subunits, with cleavage occurring after residue K109 in the sequence GDVK/L. This unusual cleavage site and efficient propagation of Hendra virus in a furin-deficient cell line indicate that the Hendra F protein is not cleaved by furin, the protease responsible for proteolytic activation of many viral fusion proteins. To identify the subcellular site of Hendra F processing, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F were metabolically labeled and chased in the absence and presence of inhibitors of exocytosis. The addition of carbonyl-cyanide-3-chlorophenylhydrazone, monensin, brefeldin A, or NaF-AlCl3 or incubation of cells at 20 degrees C all inhibited processing of the Hendra F protein, suggesting that cleavage of Hendra F occurs either in secretory vesicles budding from the trans-Golgi network or at the cell surface. In contrast to proteolytic cleavage of the simian virus 5 (SV5) F protein by the Ca(2+)-dependent protease furin, proteolytic cleavage of the Hendra F protein was not significantly inhibited by decreases in Ca2+ levels following incubation with EGTA or A23187. However, in the presence of weak amines and H+ V-ATPase inhibitors, known to raise intracellular pH, cleavage of Hendra F protein was inhibited while processing of the SV5 F protein was not significantly affected. The subcellular location, sensitivity to pH changes, and decreased Ca2+ requirement suggest that the protease responsible for cleavage of Hendra F protein differs from proteases previously shown to be involved in the processing of other viral glycoproteins.  相似文献   

19.
M Lobigs  H X Zhao    H Garoff 《Journal of virology》1990,64(9):4346-4355
The Semliki Forest virus spike glycoproteins E1 and p62 form a heterodimeric complex in the endoplasmic reticulum (ER) and are transported as such to the cell surface. In the mature virus particle, the heterodimeric association of E1 and E2 (the cleavage product of p62) is maintained, but as a more labile and acid-sensitive oligomer than the E1-p62 complex. The E3 peptide forms the N-terminal part of the p62 precursor and carries the signal for the translocation of p62 into the lumen of the ER. The question of whether E3 is also important in the formation and stabilization of the E1-p62 heterodimer has been addressed here with the aid of an E3 deletion mutant cDNA. In this construct, the entire E3 was replaced with a cleavable, artificial signal sequence which preserved the membrane topology of an authentic E2. The E3 deletion, when expressed via a recombinant vaccinia virus, abolished heterodimerization of the spike proteins. It also resulted in the complete retention of E1 in the ER and almost total inhibition of E2 transport to the plasma membrane. The oligomerization and transport defect of E1 expressed from the E3 deletion mutant could be complemented with a wild-type p62 provided from a separate coding unit in double infections. These results point to a central role of E3 in complex formation and transport of the viral structural components to the site of budding. In conjunction with earlier work (M. Lobigs and H. Garoff, J. Virol. 64:1233-1240, 1990; J. Wahlberg, W. A. M. Boere, and H. Garoff, J. Virol. 63:4991-4997, 1989), the data support a model of spike protein oligomerization control of Semliki Forest virus assembly and disassembly which may be mediated by the presence of E3 in the uncleaved p62 precursor and release of E3 after cleavage.  相似文献   

20.
J M Wahlberg  W A Boere    H Garoff 《Journal of virology》1989,63(12):4991-4997
The budding and the fusion processes of the enveloped animal virus Semliki Forest virus serve the purpose of transporting its nucleocapsid, containing its genome, from the cytoplasm of an infected cell into that of an uninfected one. We show here that, in the infected cell, the viral membrane (spike) proteins p62 and E1 are organized as heterodimers which are very resistant to dissociation in acidic conditions. In contrast, the mature form of the heterodimer, E2E1, which is found in the virus particle and which is generated by proteolytic processing of p62, is very prone to dissociate upon treatment with mildly acidic buffers. We discuss the possibility that this difference in behavior of the intracellular precursor form and the mature form of the spike protein complex represents an important regulatory mechanism for the processes involving membrane binding around the nucleocapsid during budding and membrane release from the nucleocapsid at the stage of virus fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号