首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of temperature on the life history characteristics of two populations of the polychaete Dinophilus gyrociliatus, one from Ravenna (northern Adriatic Sea) and the other from Genoa (Ligurian Sea), were investigated. The temperatures tested (6, 12, 18, 24 and 30 °C) cover a wider range than those prevailing in the natural environment. In the populations studied there are broad differences in timing of development and reproduction. At 6 °C, the adults of both populations survive for a long time but they are unable to reproduce. At 12 °C, only the animals from Ravenna manage to reproduce. At the higher temperatures (18, 24 and 30 °C), the development of the animals belonging to the Genoa strain is faster than that of the Ravenna strain. The duration of the various phases of the biological cycle is very similar in both populations, but that from Ravenna exhibits greater tolerance of low temperatures, slower development rate and lower development threshold temperature than does the Genoa population. Temperature and geographical origin also have strong effects on reproductive characteristics. The highest fecundity values were observed at 12 °C in the Ravenna strain, the lowest at 30 °C in both groups. At 18 °C, the Genoa population is more fecund than the Ravenna one, while the situation is reversed at 12 °C. The smallest ovigerous capsules are produced at 30 °C, the biggest at 12 °C, and the Genoa females produce larger capsules than do the females from Ravenna, except at 12 °C. The size of both male and female eggs varies in relation to temperature, the smallest female eggs generally being laid at the higher temperatures. At all the temperatures tested, the sex ratio of the Ravenna population is higher than that of the Genoa population. In the Ravenna strain, temperature has no effect on the sex ratio, while in the Genoa strain the sex ratio at 24 °C is lower than at 18 and 30 °C. Comparison of the two populations at the same temperature reveals considerable differences in the characteristics of their respective life histories and sex ratios. It is very likely that the extreme selectivity of the harbor environments has favored the fragmentation of the species into differentiated populations that have adapted to the conditions prevailing in the different localities.  相似文献   

2.
Our objective was to examine the effect of variation in reproductive parameters on the demography of southern elephant seals at Marion Island. We used age-specific capture probabilities of breeding females in a Cormack-Jolly-Seber context to derive reproductive rates. We found that age at maturity declined and fecundity rates increased as the population declined, indicating a compensatory response. Fecundity rates ranged from 0.03 to 0.29 among 3-year-olds (mean=0.16), 0.18 to 0.50 in 4-year-olds (mean=0.40), and 0.28 to 0.50 in 5-year-olds (mean=0.45). We think that a relative increase in food availability, concomitant with the population decline, promoted earlier sexual maturity correlated with more rapid growth of juveniles when population abundance was lower. It is suggested that the relative importance of fecundity in population regulation in elephant seals has been underestimated. Moreover, it appears that the onset of sexual maturity may be the first demographic variable to change in response to a change in population density.  相似文献   

3.
The evolutionary theory of senescence predicts that high extrinsic mortality in natural populations should select for accelerated reproductive investment and shortened life span. Here, we test the theory with natural populations of the Daphnia pulex-pulicaria species complex, a group of freshwater zooplankton that spans an environmental gradient of habitat permanence. We document substantial genetic variation in demographic life-history traits among parent and hybrid populations of this complex. Populations from temporary ponds have shorter life spans, earlier and faster increases of intrinsic mortality risk, and earlier and steeper declines in fecundity than populations from permanent lakes. We also examine the age-specific contribution to fitness, measured by reproductive value, and to expected lifetime reproduction; these traits decline faster in populations from temporary ponds. Despite having more rapid senescence, pond Daphnia exhibit faster juvenile growth and higher early fitness, measured as population growth rate (r). Among populations within this species complex we observed negative genetic correlations between r and indices of life-history timing, suggesting trade-offs between early- and late-life performance. Our results cannot be explained by a trade-off between survival and fecundity or by nonevolutionary theories of senescence. Instead, our data are consistent with the evolutionary theory of senescence because the genetic variation in life histories we observed is roughly congruent with the temporal scale of environmental change in the field.  相似文献   

4.
In age-structured populations, viability and fecundity selection of varying strength may occur in different age classes. On the basis of an original idea by Fisher of weighting individuals by their reproductive value, we show that the combined effect of selection on traits at different ages acts through the individual reproductive value defined as the stochastic contribution of an individual to the total reproductive value of the population the following year. The selection differential is a weighted sum of age-specific differentials that are the covariances between the phenotype and the age-specific relative fitness defined by the individual reproductive value. This enables estimation of weak selection on a multivariate quantitative character in populations with no density regulation by combinations of age-specific linear regressions of individual reproductive values on the traits. Demographic stochasticity produces random variation in fitness components in finite samples of individuals and affects the statistical inference of the temporal average directional selection as well as the magnitude of fluctuating selection. Uncertainties in parameter estimates and test power depend strongly on the demographic stochasticity. Large demographic variance results in large uncertainties in yearly estimates of selection that complicates detection of significant fluctuating selection. The method is illustrated by an analysis of age-specific selection in house sparrows on a fitness-related two-dimensional morphological trait, tarsus length and body mass of fledglings.  相似文献   

5.
The copulation duration of male wolf spider Pardosa astrigera, was significantly influenced by environmental temperature, as had been found in some insect species. Therefore, temperature during male courtship and copulation may influence the amount of sperm and seminal fluids transferred during copulation, which in turn could influence female fitness. In order to test this hypothesis, we subjected pairs of male and female P. astrigera to five temperature groups from 16 to 32 °C at an interval of 4 °C, and investigated whether and to what extent the various temperatures during male courtship and copulation influenced female reproductive output and female adult longevity under controlled laboratory conditions. With the increase of copulation temperature, females were more likely to lay egg sacs. The total egg sacs and lifetime fecundity of female were positively influenced by copulation temperature, whereas female lifetime spiderlings and adult longevity were independent of copulation temperature.  相似文献   

6.
Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.  相似文献   

7.
Environmentally induced variation in survival and fecundity generates demographic fluctuations that affect population growth rate. However, a general pattern of the comparative influence of variation in fecundity and juvenile survival on elephant population dynamics has not been investigated at a broad scale. We evaluated the relative importance of conception, gestation, first year survival and subsequent survivorship for controlling demographic variation by exploring the relationship between past environmental conditions determined by integrated normalized difference vegetation index (INDVI) and the shape of age distributions at 17 sites across Africa. We showed that, generally, INDVI during gestation best explained anomalies in age structure. However, in areas with low mean annual rainfall, INDVI during the first year of life was critical. The results challenge Eberhardt's paradigm for population analysis that suggests that populations respond to limited resource availability through a sequential decrease in juvenile survival, reproductive rate and adult survival. Contrastingly, elephants appear to respond first through a reduction in reproductive rate. We conclude that this discrepancy is likely due to the evolutionary significance of extremely large body size – an adaptation that increases survival rate but decreases reproductive potential. Other megaherbivores may respond similarly to resource limitation due to similarities in population dynamics. Knowing how vital rates vary with changing environmental conditions will permit better forecasts of the trajectories of megaherbivore populations.  相似文献   

8.
9.
I evaluated demographic parameters as indicators of fitness by calculating the net reproductive rate (R0), exponential rate of change (r), lifetime reproductive success (LRS), and Malthusian parameter (m) for nine genotypes and four phenotypes (two alleles at each of two independent loci) of an age-structured population. The given starting conditions included age-specific survival rates of males and females and age-specific fecundity of females for each genotype (to simplify the problem I presumed no differences in survivorship or fecundity of genotypes with the same phenotype) and the same age structure for each genotype. The prevailing genotype had the greatestm, but it did not have the greatestr,R0, or LRS, or even the greatest survivorship of either juveniles or adults, or the greatest fecundity. This result indicates thatmis the only correct measure of fitness (i.e., as a predictor of which genotype should prevail from among a group of genotypes) and that comparisons ofr,R0, LRS, juvenile or adult survival rates, or fecundity may be misleading indicators of which genotype should prevail (i.e., be most “fit”) over time (i.e., be selected for).  相似文献   

10.
Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation.  相似文献   

11.
12.
Studies on the reproductive biology and age of amphibians provide primary information about the life history and population demographic parameters of species. Here, we describe the reproductive cycle, size–fecundity relationships, reproductive effort, sexual dimorphism and sexual maturity of Odontophrynus americanus, the flood frog, from South Brazil. A total of 96 individuals were analysed. The reproductive cycles of males and females were described through morphoanatomical analysis of testis and ovary. Age at onset of sexual maturity and estimated longevity were determined by skeletochronology. Individuals of O. americanus presented a potentially continuous reproductive cycle with a peak of reproductive activity in the warmer months. Females presented a higher reproductive investment than males. Sexual maturity was reached at around one year of age for both sexes while longevity differed between the sexes, with females living up to six years and males up to ten years. No evidence of sexual size dimorphism was found. This study is among the few that have assessed age at sexual maturity and longevity in a Neotropical anuran. Basic aspects of life history are of paramount importance because they allow comparisons and test of hypotheses to be made, which can help to build generalizations about the evolutionary meaning of ecological strategies.  相似文献   

13.
The effects of dopamine (DA) on juvenile hormone (JH) metabolism and fitness (estimated as fecundity and viability levels under heat stress (38 °C)) in Drosophila virilis have been studied. An increase of DA level obtained by feeding with DA reduced fitness of wild-type (wt) flies under stress, and decreased JH degradation in young wt females while increasing it in sexually mature wt females. A decrease in DA levels resulted from 3-iodo-tyrosine treatment and caused a decrease in JH degradation in sexually mature wt and heat sensitive (hs) mutant females (DA level in hs females is twice as high in wt females). A dramatic decrease in viability under stress and fecundity under normal conditions in wt, but not hs, females was observed. 3-iodo-tyrosine treatment also reduced the number of oocytes at stages 8-14, delayed oocyte transition to stage 10 and resulted in the accumulation of mature eggs in wt females. It delayed maturation of wt, but not hs, males as well, but did not affect their fertility. This advances our understanding of the regulation of JH metabolism by DA in Drosophila and suggests a crucial role for the basal DA level in fitness.  相似文献   

14.
Field sampling of an Iowa population of Lymnaea stagnalis appressa Say indicated an annual generation pattern, with survivorship to maturity of i percent or less. Estimates of adult fecundity ranged from about 300 to 800 eggs.Density and food manipulations were performed to determine whether density dependent limitation of growth rates, maturation, or fecundity occurs in this fresh water pulmonate snail. Addition of a high quality food resource, spinach, accelerated growth rates, but did not drastically accelerate maturity, nor increase fecundity. Density increments lowered growth rates, delayed maturity, and lowered fecundity, and the addition of spinach did not counteract high densities. Adult densities are fairly low in the field population, and adults are randomly dispersed, indicating little density dependent regulation of fecundity in this population. However, the low survivorship to maturity, response in growth rates with food addition, and increasing survivorship with age and size indicate that juvenile mortality may play an important role in structuring life history patterns in this population.  相似文献   

15.
M. J. Kohane 《Genetica》1987,72(3):199-210
Genotypic fitnesses were estimated over the temperature range 15°C to 29°C for genotypes of the eyeless/shaven-naked system. Total fitness was determined directly from estimates of mating ability, fecundity and egg-to-adult development time and viability, by gene frequency changes in discrete generation populations and in a single generation population experiment involving culture on a rotational basis at 29°C and 15°C. Genotypic differences were detected for mating ability and egg to adult development time and survival. Heterozygote advantage was observed for total fitness and this effect was greatest at 15°C and for culture on a rotational basis at 29°C and 15°C. There was evidence for genetic associations among some fitness components. The tendency for heterozygote advantage in extreme environments supports the general observation of high expressed genetic variation for fitness under extreme stresses. The results suggest an approach to the understanding of the genetic basis of fitness variation in natural populations based upon direct assessments of environmental stresses of ecological importance.  相似文献   

16.
1. In populations of small mammals, food supplementation typically results in higher population densities, body weights, growth rates and reproductive rates. However, few studies have demonstrated a relationship between forage levels and demographic rates in wild populations in the absence of supplementation. 2. We examined the association of levels of available forage with individual growth rates and time to sexual maturity in eight re-introduced and three naturally occurring populations of water voles (Arvicola terrestris). 3. Range sizes were smaller at sites with higher population densities. Mean forage availability and individual growth rates covaried with range size at each site. 4. The weight at which water voles became sexually mature was 112 g for females and 115 g for males and did not vary between study sites. Differences in growth rates therefore translated into differences in the time taken to reach maturity between sites. 5. In the re-introduced populations, mean days to maturity varied inversely with mean range length. Females took 7 days (18%, range 40-47 days) longer and males 5 days (13%, range 40-45 days) longer to reach breeding condition at the sites with the shortest mean range lengths. 6. Evidence from this study suggests a possible mechanism by which increased population densities may reduce maturation rates in water voles through a reduction in mean range size, thereby limiting the availability of forage to each individual.  相似文献   

17.
为明确冷驯化处理对异色瓢虫Harmonia axyridis后代生长发育及适合度的影响, 本研究通过两性生命表的制作, 在室内条件下调查了冷处理后其后代发育历期、 成虫产卵前期、 寿命和生殖力以及后代生命表参数。结果表明: 冷驯化使异色瓢虫后代卵的发育历期延长, 幼虫(1-4龄)和蛹的发育历期则缩短; 随着冷驯化时间的延长, 后代体长和体重增量均减小。且完成发育的后代成虫产卵前期延长, 寿命缩短, 生殖力下降。后代生命表参数内禀增长率(r)、 周限增长率(λ)、 净生殖率(R0)和年龄特征存活率(lx)均降低, 但是后代雌虫所占比例却升高。此外, 冷驯化类型对异色瓢虫后代生长发育的影响也不相同。经相同时间(5 d)的低温诱导, 变温诱导的后代成虫寿命比恒定低温诱导的长, 但是生殖力却低; 变温诱导的后代生命表参数(r, λ和R0)均小于恒定低温诱导的, 但是lx却高于恒定低温诱导的。结果说明, 异色瓢虫亲代经历冷驯化, 这种对低温的可塑性反应会延伸到下一代, 而且还能够影响后代的适合度, 这对其在低温下的存活和繁殖具有重要的意义。  相似文献   

18.
There is increasing evidence of indirect effects of hunting on populations. In species with sexually selected infanticide (SSI), hunting may decrease juvenile survival by increasing male turnover. We aimed to evaluate the relative importance of direct and indirect effects of hunting via SSI on the population dynamics of the Scandinavian brown bear (Ursus arctos). We performed prospective and retrospective demographic perturbation analyses for periods with low and high hunting pressures. All demographic rates, except yearling survival, were lower under high hunting pressure, which led to a decline in population growth under high hunting pressure (λ = 0.975; 95% CI = 0.914–1.011). Hunting had negative indirect effects on the population through an increase in SSI, which lowered cub survival and possibly also fecundity rates. Our study suggests that SSI could explain 13.6% of the variation in population growth. Hunting also affected the relative importance of survival and fecundity of adult females for population growth, with fecundity being more important under low hunting pressure and survival more important under high hunting pressure. Our study sheds light on the importance of direct and indirect effects of hunting on population dynamics, and supports the contention that hunting can have indirect negative effects on populations through SSI.  相似文献   

19.

Background and Aims

Many aquatic species with stylar polymorphisms have the capacity for clonal and sexual reproduction and are sensitive to the balance of the two reproductive modes when there are a limited number of mating morphs within a population. This study asked how the clonal and sexual reproductive modes perform in populations that contain only a single morph and where fitness gain through sexual reproduction is rare. In clonal aquatic Nymphoides montana, polymorphic populations normally contain two mating morphs in equal frequencies. Populations are sexually fertile and appear to be maintained by pollen transfer between the two partners. However, in a monomorphic population of N. montana where mating opportunities are unavailable, female and male function is impaired and clonality maintains the population. Here, the consequences of intraspecific variation in sexuality were explored between monomorphic and polymorphic N. montana populations in eastern Australia.

Methods

Comparative measurements of male and female fertility, total dry mass and genotypic diversity using ISSR markers were made between populations with variable sexuality.

Key Results and Conclusions

Very few seeds were produced in the monomorphic population under natural and glasshouse conditions due to dysfunctional pollen and ovules. Stigma–anther separation was minimal in the monomorphic population, which may be a consequence of the relaxed selective pressures that regulate the maintenance of sexual function. However, clonal reproduction was favoured at the expense of sexual reproduction in the monomorphic population; this may facilitate the establishment of sterility throughout the population via resource reallocation or pleiotropic effects. The ISSR results showed that the monomorphic population was one large, single genotype, unlike the multi-genotypic fertile polymorphic populations. Evolutionary loss of sex in a clonal population in which a mating morph is absent was evident; under these conditions clonal growth may assure reproduction and expand the population via spreading stolons.  相似文献   

20.
Life-history theory predicts the occurrence of variation in the life-history traits of fish populations under different environmental conditions; however, most studies have focused on such variation between geographically separated populations. We compared breeding characteristics and life-history traits of the Japanese fluvial sculpin (Cottus pollux), a bottom-dwelling nest-holding fish, between two adjacent sites sub-divided by a weir along a stream course in central Japan. Males in the area with a lower abundance of nest sites reached sexual maturity at an earlier age and had a shorter life span than males in the area with sufficient nest abundance. Size-dependent male reproduction was found only in areas with a shortage of nest sites, supporting the assumption of competitive exclusion among males for nests. Females matured at the same age in both sites with no differences in age-specific growth rates and mortality. Our results provide evidence for life-history variation in age and size at maturity and age-specific mortality schedule of males in nest-holding fishes in a single stream population via different sexual selection regimes related to differences in nest abundance between sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号