首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predators in nature include an array of prey types in their diet, and often select certain types over others. We examined (i) prey selection by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) when offered two prey types, juvenile sea scallops (Placopecten magellanicus) and blue mussels (Mytilus edulis), and (ii) the effect of prey density on predation, prey selection, and component behaviours. We quantified predation rates, behavioural components (proportion of time spent searching for prey, encounter probabilities) and various prey characteristics (shell strength, energy content per prey, handling time per prey) to identify mechanisms underlying predation patterns and to assess the contribution of active and passive prey selection to observed selection of prey. Sea stars strongly selected mussels over scallops, resulting from both active and passive selection. Active selection was associated with the probability of attack upon encounter; it was higher on mussels than on scallops. The probability of capture upon attack, associated with passive selection, was higher for mussels than for scallops, since mussels can not swim to escape predators. Sea stars consumed few scallops when mussels were present, and so did not have a functional response on scallops (the target prey). Rock crabs exhibited prey switching: they selected mussels when scallop density was very low, did not select a certain prey type when scallop density was intermediate, and selected scallops when scallop density was high relative to mussel density. The interplay between encounter rate (associated with passive selection) and probability of consumption upon capture (associated with both active and passive selection) explained observed selection by crabs. Scallops were encountered by crabs relatively more often and/or mussels less often than expected from random movements of animals at all scallop densities. However, the probability of consumption varied with scallop density: it was lower for scallops than mussels at low and intermediate scallop densities, but tended to be higher for scallops than mussels at high scallop densities. When mussels were absent, crabs did not have a functional response on scallops, but rather were at the plateau of the response. When mussels were present with scallops at relatively low density, crabs exhibited a type II functional response on scallops. Our results have implications for the provision of protective refuges for species of interest (i.e., scallops) released onto the sea bed, such as in population enhancement operations and bottom aquaculture.  相似文献   

2.
We compared predation rates and behaviours of sea stars (Asterias vulgaris and Leptasterias polaris) and crabs (Cancer irroratus and Hyas araneus) preying on juvenile sea scallops (Placopecten magellanicus, 25-35 mm shell height) in laboratory. These predatory species co-occur with sea scallops on the sea bed of the Gulf of St. Lawrence, Canada, and limit scallop survival in seeding operations. We also examined, under controlled conditions, the effect of tethering scallops on predator-prey interactions. Predation rates, time budgets and encounter behaviours observed for A. vulgaris and C. irroratus preying on free (untethered) scallops were comparable to previous studies. C. irroratus were more effective predators as they consumed 3.1 scallops predator− 1 day− 1, although they spent only 0.9% of their time searching for prey. A. vulgaris consumed 0.9 scallops predator− 1 day− 1 and spent 7.6% of their time searching. Sea stars L. polaris had a lower predation rate (0.02 scallop predator− 1 day− 1) than A. vulgaris. The frequent avoidance behaviour of L. polaris and its low ability to capture scallops support the notion that scallops are not a main component of this sea star's diet. Crabs H. araneus had similar predation rates (1.3 scallops predator− 1 day− 1) and behaviours to C. irroratus, although the probability of consumption upon capture was affected by relatively high numbers of rejections and post-capture escapes of scallops. As expected, the tethering procedure increased predation rate of L. polaris (about 19 times higher), but surprisingly did not significantly affect that of A. vulgaris. Examination of behaviours indicated that A. vulgaris offered tethered scallops tended to have a higher probability of capture, but spent less time searching for prey (possibly because satiation was reached) than A. vulgaris offered free scallops. Predation rates and behaviours of both crab species were not affected by tethering, since encounter rate was the primary determinant of crab-scallop interactions. Identification and quantification of behaviours underlying the predation process allowed us to mathematically model predator-related mortality for the four predator species.  相似文献   

3.
Large invasive predators like the king crab, Paralithodes camtschaticus, deserve particular attention due to their potential for catastrophic ecological impact on recipient communities. Conspicuous, epibenthic prey species, such as the slow growing commercial scallop Chlamys islandica, are particularly exposed to the risk of local extinction. A research program integrating experiments and field monitoring is attempting to predict and track the impact of invasive king crab on scallop beds and associated fauna along the north Norwegian coast. The claw gape of the crab shows no limitations in handling the flat-bodied scallop. However, the potential impact of the crab on scallop may depend on the availability of other calcified prey associated with scallop beds, such as the sea star, sea urchin, and blue mussel, all species recorded in the diet of P. camtschaticus. To address this issue, a laboratory experiment on foraging behaviour of P. camtschaticus was conducted. The experimental results show that all size classes of red king crab prefer scallops, but small juveniles and medium sized crabs demonstrate active selection for starfish (Asterias rubens) that equals or surpasses the electivity of the large crab. The selection of sea urchin (Strongylocentrotus droebachiensis) and blue mussel (Mytilus edulis) is slightly positive or neutral for the three crab size classes. These results suggest that scallop beds with a rich associated fauna are less vulnerable to red king crabs predation and possibly more resilient than beds with few associated species. Also, crab size distribution is likely relevant for invasion impact, with increasing abundance of small and medium sized crabs being detrimental for alternative calcified prey associated with scallop beds. Successive stages of crab invasion will see an acceleration of scallop mortality rates associated with (i) decreasing availability of alternative prey, due to protracted predation pressure intensified by recruitment of juvenile crabs, and (ii) increased number of large crabs. Estimates of crab density and intake rates suggest that the accelerated loss rates will eventually endanger scallop beds persistence.  相似文献   

4.
Coastal marine seagrass ecosystems are important nursery grounds for commercially and recreationally important species, and they serve as key settlement and recruitment sites for other species. We investigated several years (2001-2003) where episodic settlement events of blue mussels (Mytilus edulis) occurred in Barnegat Bay, NJ, USA. Population assessment indicated that blue mussels settled in eelgrass beds (Zostera marina) in late spring with peak densities exceeding 170,000 m−2. Based on calculated filtration rates of M. edulis, we determined that for at least 53 days in 2001, the density and size distribution of M. edulis were sufficient to filter the water column volume in excess of twice a day, with maximum calculated filtration rates exceeding 8 m3 water m−2 day−1. While the settlement event in 2001 was very localized, in 2003, the settlement event was considerably more widespread throughout the bay, with maximum settling densities exceeding 175,000 individuals m−2. Associated with these high densities, maximum calculated filtration rates exceeded 15 m3 water m−2 day−1. This filtration potential may have impeded the localized development of a brown-tide (Aureococcus anophagefferens) bloom in 2001, which occurred in other regions of the bay, but the widespread settlement event seen in 2003 may have impeded the development of any brown-tide blooms in Barnegat Bay during that summer. The decline in mussel densities throughout the summer may be a result of elevated water temperatures in this back bay, but at one site, the high settlement of M. edulis was followed by a substantial migration (>40 individuals m−2) of small sea stars (Asterias forbesii). In 2001, A. forbesii was a significant factor in reducing M. edulis density by the end of the summer at the Barnegat Inlet site and a community level assessment showed significant positive correlations between mussel aggregations and sea star densities (r=0.68-0.73, P<0.001). At this same site in 2003, the sea stars were again present in high densities (26 m−2) and were a potential mechanism for mussel decline. In other regions of the bay, sea star densities are very low, but numerous other predatory species exist, including blue crabs (Callinectes sapidus), green crabs (Carcinus maenus), spider crabs (Libinia spp.), and several Xanthid crabs. Given the high mussel densities seen in this study and the considerable predation by sea stars and other benthic predators, the benthic-pelagic coupling which these mussels provide in this system contributes to the high secondary production in these grass beds.  相似文献   

5.
We ran field experiments to examine the responses of the black sea urchin Tetrapygus niger to predatory sea stars. Trials involving simulated attacks (one or several arms of a sea star being placed on top of half the urchin) showed that the urchin differentiated between the predatory sea stars, Heliaster helianthus and Meyenaster gelatinosus, and a non-predatory sea star, Stichaster striatus, and showed almost no response to a sea star mimic. We further compared the responses of the urchin to different threat levels presented by the two predatory sea stars. The highest threat level was a simulated attack, then mere contact, and subsequently sea stars being placed at different distances from the urchin. All urchins responded to simulated attacks and contact with both sea stars. The proportion responding decreased with distance and more rapidly in trials with H. helianthus (0% at a distance of 30 cm) than with M. gelatinosus (33% at a distance of 50 cm). At each of the threat levels where there was a response to both sea stars, the urchins responded more rapidly to M. gelatinosus than to H. helianthus. In a third experiment where a predatory sea star was added to a circular area (1-m diameter) in which either 4-8 or 11-19 undisturbed urchins were present, the urchins fled the area more rapidly when the added sea star was M. gelatinosus, but the rate of fleeing did not vary with density, as might occur if there was communication among urchins using alarm signals. Our observations suggest that M. gelatinosus presents a stronger predatory threat than H. helianthus. This corresponds to field observations showing that the urchins are more frequently consumed by M. gelatinosus. These are the first field experiments demonstrating distance chemodetection by a marine invertebrate under back-and-forth water flow from wave activity.  相似文献   

6.
The scallop Chlamys hastata frequently carries epibionts such as sponges and barnacles on its shells. Although the scallop-sponge relationship has been characterized as a mutualism, little is known about the scallop-barnacle relationship. This study investigated the effects of sponge and barnacle encrustation on the ability of C. hastata to avoid predation by the sea star Pycnopodia helianthoides. In feeding trials, P. helianthoides caught and consumed significantly more barnacle-encrusted scallops (7.7 ± 0.8 out of 20 scallops) than scallops encrusted by either of the sponges Myxilla incrustans (4.1 ± 0.9) or Mycale adhaerens (3.0 ± 0.5). Epibiont-free scallops (5.7 ± 0.5) formed an intermediate treatment between barnacle-encrusted and sponge-encrusted scallops. Possible mechanisms by which the sponges protected the scallops were investigated in two ways: two feeding trials were videotaped to allow qualitative analysis of sea star and scallop behavior and sea star feeding responses to scallop and sponge homogenates were determined to investigate if sea stars accept scallops and sponges as prey. Sea stars displayed positive feeding responses to scallop puree 97.5% ± 1.6 of the time while only displaying positive responses to Mycale adhaerens homogenate 4.4% ± 2.0 of the time and to Myxilla incrustans homogenate 4.4% ± 2.9 of the time. The videotaped feeding trials indicated that interference with tube feet adhesion by the sponge deterred predation. Observations of both sea stars that were videotaped showed that neither avoided trying to capture sponge-encrusted scallops, and at no time was a captured scallop willingly released by the sea stars. Thus, it appears that sponges provide tactile-mechanical protection and possibly chemical or tactile camouflage in this predator/prey relationship. Finally, the effects of sponge encrustation on barnacle settlement were determined. Field experiments showed that barnacle larvae settled more frequently on epibiont-free scallops than on those with either of the two sponges, potentially protecting the scallops from an epibiont that increases the scallop’s susceptibility to predation. Handling editor: K. Martens  相似文献   

7.
Predator-prey relationships between the panopeid crab, Dyspanopeus sayi, and the mytilid, Musculista senhousia, were investigated. Through laboratory experiments, prey-handling behavior, prey size selection, predator foraging behavior and preferences for two types of prey (M. senhousia and the Manila clam Ruditapes philippinarum) were assessed. Handling time differed significantly with respect to the three prey sizes offered (small: 15.0-20.0 mm shell length, SL; medium: 20.1-25.0 mm SL; and large: 25.1-30.0 mm SL); mud crabs were more efficient in predating medium-small than large prey. Although differences in prey profitability were not evident, D. sayi exhibited a marked reluctance to feed on larger-sized prey whilst smaller, more easily predated mussels were available. Size selection may be the result of a mechanical process in which encountered prey are attacked but rejected if they remain unbroken after a certain number of opening attempts. D. sayi exhibited inverse density-dependent foraging. A significant higher mortality of prey was evident at low prey density. Thus, at low predator density, the D. sayi-M. senhousia interaction was a destabilizing type II functional response. Interference responses affected the magnitude of predation intensity by D. sayi on M. senhousia, since as the density of foraging crabs increased, their foraging success fell. At high density (4 crabs tank−1), crabs engaged in a high amount of agonistic activity when encountering a conspecific specimen, greatly diminished prey mortality. Finally, presenting two types of prey, Manila clam juveniles were poorly predated by mud crabs, which focused their predation mostly on M. senhousia. It is hypothesized that, when more accessible prey is available, mud crabs will have a minimal predatory impact on commercial R. philippinarum juvenile stocks.  相似文献   

8.
The intentional introduction of a species for the enhancement of stock or establishment of new fisheries, often has unforeseen effects. The red king crabs, Paralithodes camtschaticus, which was introduced into the Barents Sea by Russian scientists, has established a self-sustaining population that has expanded into Norwegian waters. As top benthic predators, the introduced red king crabs may have possible effects upon native epifaunal scallop (Chlamys islandica) communities. These benthic communities may be a source of prey species in late spring, when the red king crabs feed most intensively. Foraging rates (consumption, killing or severely damaging) of red king crab on native prey organisms were measured by factorial manipulation of crab density (0.5, 1.5 and 3 per m 2), size classes (immature, small mature, and large mature crabs), and by evaluating prey consumption after 48 h, in order to extrapolate a scenario of the likely impacts. Foraging rates of the red king crab on scallops ranged between 150 and 335 g per m2 within 48 h. These rates did not change when crab density was altered, though an increased amount of crushed scallops left uneaten at the tank floor, were correlated with high density of small mature crabs. Foraging rate changed significantly with crab size. Consequently, the susceptibility of native, shallow water epibenthic communities to red king crab predation in the early life history stages, and during the post-mating/molting spring period, must be considered significant when foraging rates are contrasted with natural scallop biomass between 400 and 1200 g scallops per m2.  相似文献   

9.
Invasive organisms have the potential for competition with native organisms. In the Southern Gulf of St. Lawrence, juvenile American lobsters have a potential spatial overlap with adult green crabs. Crustaceans use agonistic behaviour to settle disputes, with the larger organism often winning contests for limited resources such as food and shelter. Two experiments were carried out using adult green crabs (53-76 mm carapace width) and juvenile American lobsters (28-57 mm carapace length). The first experiment used a limited food resource. We found that green crabs were the first to the food in all trials, fed in significantly more trials than lobsters and spent a significantly greater proportion of time with the food. The lobsters were only able to displace the green crabs from the food in 2 of 65 attempts. The second experiment was designed to examine shelter competition; unexpectedly some predation by green crabs on lobsters occurred, which allowed us to test hypotheses about how relative size and shelter use affect predation. Green crabs captured and consumed juvenile lobsters in 6 of 11 trials. The lobsters that survived spent significantly more time in shelter. There was no clear relationship between shelter use and size of lobster. The lobsters that were larger in relation to the green crabs suffered a higher rate of predation, which we believe was due to more conspicuous activity and less use of shelter. It appears that green crabs have the potential to negatively impact native juvenile lobster.  相似文献   

10.
The effects of competitor pressure and prey odor on foraging behavior of the rock crab, Cancer irroratus (Say), were investigated. The Jonah crab, Cancer borealis (Stimpson), was chosen as the interspecific competitor because it shares resources with C. irroratus. Four treatments were tested for their effect on foraging: the presence or absence of a competitor and two types of prey odor; body odor (living mussel) and tissue extract (dead mussel tissue). The presence of Jonah crabs did not influence location time, search time, prey size selected, or handling time of the rock crabs. However, rock crabs responded differently to the presence of body odor and tissue extract cues. The presence of extract odor decreased the time to locate prey while increasing the number of prey manipulated and prey size selected. When prey body odor was present, rock crabs displayed less investigative behaviors than in the presence of extract odor, illustrated by reduced location time. Extract odor provided a stronger and more attractive cue than body odor, but increased prey manipulation and search time. Extract odor induced increases in manipulation and searching for prey but canceled out the benefits of decreased location time, resulting in crabs from both treatments displaying similar search times. These elevated behaviors may be associated with foraging for injured and cracked prey or may indicate an area of conspecific feeding.  相似文献   

11.
Suspension-feeding bivalves may enhance the energy value of their food supply by sorting particles both before and after ingestion. Previous research has indicated that the sea scallop (Placopecten magellanicus (Gmelin) (Mollusca: Bivalvia)) is capable of sorting particles within the gut both on the basis of physical properties (particle size and density) as well as chemical properties. In this study, the ability of the sea scallop to sort living from dead material solely on the basis of chemical properties was tested. The microalga Chlorella (Chlorophyta: Chlorophyceae) was chosen as the test particle because its thick cell wall remains physically intact following heat treatment, while its carbon, nitrogen, and chlorophyll a content declines. Scallops were fed a mixture of radiolabelled live and heat-killed Chlorella. We demonstrate that P. magellanicus can distinguish between living and dead algae, retaining live Chlorella cells longer than heat-killed cells. This ability to detect the subtle chemical differences between living algal material and detrital material would enhance the digestive efficiency of this species by reducing the amount of energy expended, digesting poor-quality materials. This paper presents the first study of the ability of a bivalve to distinguish between two physically identical but nutritionally different forms of the same species of microalgae.  相似文献   

12.
Phenotypic plasticity in response to variations in predatory pressure frequently occurs in wild populations, but it may be more evident and critical in species subjected to high exploitation rates and aquaculture. The Chilean scallop Argopecten purpuratus is becoming a domesticated species and the production of hatchery-reared scallops (closed environment), has implied the development of successive generations of individuals deprived of several stimuli normally present in their natural habitats (e.g. predators). We compared the escape capacities between wild and cultured A. purpuratus and also evaluated the effect of reproductive investment on the escape response capacities. Wild and cultured scallops, at different reproductive stages (maturing, mature and spawned), were stimulated to escape with the predatory sea star Meyenaster gelatinosus. We recorded: (1) the time to reaction, (2) the total number of claps, the duration of the clapping response and the clapping rate until exhaustion, (3) the time they spent closed after exhaustion, and (4) the proportion of claps recovered, the duration of the clapping response and the clapping rate after 20 min of recuperation. We found that wild A. purpuratus (1) reacted earlier when contacted by their natural predator, (2) escaped faster (greater clapping rates), (3) spent less time with their valves closed when exhausted, and (4) most of their escape capacities (i.e. claps number; clapping time; capacity of recuperation) were less affected by the energetic requirements imposed by gonad maturation and/or spawning than in cultured scallops. We considered that all these aspects of the escape response would make wild scallops less vulnerable to predation than cultured scallops, thus decreasing predation risk. Given the reduction of escape performance in cultured scallops, we suggest that this aspect should be considered for the success of culture-based restocking programs.  相似文献   

13.
高霄龙  李莉  邱兆星  郑永允  李琪 《生态学报》2015,35(11):3562-3568
敌害生物的捕食在控制海洋底栖生物群落的丰度和组成中起着关键性的作用。以红螯相手蟹(Sesarma haematocheir)和毛蚶(Scapharca subcrenata)为试验对象,研究了红螯相手蟹的密度、规格、性别,以及毛蚶的密度、规格、海水温度和底质条件对毛蚶苗种存活的影响。结果表明,蟹表现出了第二种类型的功能反应,高密度底播毛蚶苗种可以显著提高成活率;当毛蚶苗种壳长达到20mm以上时,蟹的摄食速率显著下降;随着蟹个体的增大,其摄食速率显著增加,毛蚶的存活率下降;当蟹的密度逐渐增加的时候,同种个体之间的干扰竞争显著提高了毛蚶存活率;雄蟹凭借强有力的螯导致了更多毛蚶苗种的死亡;海水温度较低的春季和秋季底播毛蚶苗种可以显著提高成活率;底质条件的复杂性和异质性为毛蚶的存活提供了"庇护空间",从而减少了敌害生物捕食所带来的损失。  相似文献   

14.
Community structure is shaped by external factors (i.e., habitat, temperature, and food) frequently modified by interactions among its members. This study focusses on trophic interactions between two sympatric mysids Praunus flexuosus and Neomysis integer of the Elbe Estuary, northern Germany. Based on an experimental approach, intraguild predation was evaluated. Predation rate of P. flexuosus on N. integer was positively related to predator size and temperature. Predation rate was significantly correlated with prey size, juvenile N. integer released just from the mysid marsupium being most vulnerable. However, adult P. flexuosus were able to gain more energy in terms of body carbon by catching larger N. integer, whereas immature P. flexuosus assimilated more energy by capturing large numbers of the small-sized N. integer. In contrast to N. integer, P. flexuosus showed an efficient escape behaviour that prevented all stages of N. integer from preying on any size class of P. flexuosus. When Eurytemora affinis was offered as prey, both N. integer and P. flexuosus increased predation rates with predator size and temperature. In mixed prey (N. integer and E. affinis) experiments at 10 °C, predation rates of adult P. flexuosus on N. integer released just from the marsupium declined from 17±8 to 6±4 N. integer mysid−1 day−1. We conclude that intraguild predation exists between the two species but is one sided with small N. integer being strongly suppressed. This heavy predation pressure is modified by the addition of alternative food resources, in this case, E. affinis.  相似文献   

15.
The hormathiid sea anemone Allantactis parasitica was found living as an epibiont on numerous species of gastropods at depths of 725-1100 m along the continental slope of eastern Canada. The proportion of bathyal gastropods hosting 1-6 sea anemones reached 72.5% in a single trawl. Although A. parasitica was occasionally found on other substrata (i.e. empty shells, pebbles), laboratory trials confirmed that they preferably associate with living gastropods. Settlement of planula larvae occurred significantly more often on the shells of live bathyal gastropods than on all other substrata present in the tanks. Juvenile sea anemones (∼ 1 mm diameter) readily moved from the mud or other inert substrata onto shells of burrowed bathyal gastropods. Conversely, larvae, juveniles and adults of A. parasitica never associated with any shallow-water gastropods when given the opportunity. Trials exposing predatory sea stars (Leptasterias polaris) from shallow and bathyal depths to bathyal gastropods (Buccinum undatum) with epibiotic A. parasitica, and to asymbiotic bathyal and shallow-water B. undatum, revealed adaptive behaviours in both prey and predator. Shallow-water gastropods (devoid of epibionts) reacted defensively to L. polaris, whereas bathyal gastropods relied mostly on their epibionts to protect them, thus falling prey to L. polaris when the epibionts were removed. L. polaris from bathyal depths typically ignored symbiotic gastropods, but they consistently preyed on asymbiotic ones, while L. polaris from shallow areas initially attempted to prey on all gastropods, but learned to avoid those harbouring sea anemones. Furthermore, living as epibionts afforded sea anemones a means to escape one of their own predators, the sea star Crossaster papposus. The mutualistic relationship between hormathiid sea anemones and bathyal gastropods from the NW Atlantic may have evolved in response to predation pressure.  相似文献   

16.
Range expansion and population establishment of individual species can have significant impacts on previously established food webs and predator-prey dynamics. The stone crab (Menippe spp.) is found throughout southwestern North Atlantic waters, from North Carolina through the Gulf of Mexico and the Central American Caribbean, including the Greater Antilles. Recent observations suggest that stone crabs have become better established on certain oyster reefs in North Carolina than in the early 1900s when they we first observed in NC. To assess the predatory impact of stone crabs on oysters, we (1) quantified stone crab densities on subtidal oyster reefs in Pamlico Sound, NC using scuba surveys, and (2) conducted laboratory predation experiments to assess the functional response of stone crabs to varying densities of oysters. We then (3) analyzed previously unpublished functional response data on another important oyster predator, the mud crab Panopeus herbstii. Finally, we (4) compared and contrasted potential predatory impacts of stone, mud and blue crabs (Callinectes sapidus). The functional response data and analyses for both stone crabs and mud crabs were consistent with a type II functional response. Mud crabs, on a m2 basis, inflicted the highest proportional mortality on oysters over a 24 hour period, followed by stone and then blue crabs. Proportional mortality did not vary significantly with oyster size; however, relatively small and large oysters were consumed disproportionately less than medium-sized oysters, likely due to the mechanical inability of stone crabs to handle small oysters, and the inability to crush large oysters. Although stone crabs appear to be established in Pamlico Sound at densities equivalent to densities in other systems such as the U.S. Florida Panhandle, their predatory activities on oysters are not expected to have as significant a negative impact on oyster populations compared to other resident predators such as mud crabs.  相似文献   

17.
The relationship of increasing prey productivity, a measure incorporating prey settlement and body growth, to changes in the relative impact of two predator groups, birds and the sea star, Pisaster ochraceus (Brandt) on a competitively dominant mussel, Mytilus californianus were examined. The purpose of this experiment was twofold, 1) to determine if the separate effects of each predator group on prey abundance increased as prey productivity increased and 2) to determine if the relative impacts of the two predator groups diverged as prey productivity increased. In this experiment, the separate impact of each predator group increased with increasing prey productivity. However, the relative impact of each predator group did not diverge with increasing prey productivity. Unlike previous studies that suggested with increasing prey productivity the relative effect of two predator groups should diverge, this experiment suggested that communities can have more redundant predator groups than originally thought. The results of an analysis using a proportional hazards model suggested that despite increasing prey productivity, birds and the sea star were equal in their ability to curb population increases by M. californianus. These results highlight the need to carefully consider what type of species to species comparisons to make when attempting to discern the relative roles of different predator groups in a community.  相似文献   

18.
Plaice (Pleuronectes platessa) nursery grounds on the Swedish west coast have been subject to increasing cover of annual green macroalgae during recent years, with growth of algae starting at the time of plaice settlement in April to May. A laboratory experiment was performed to investigate how the vulnerability to predation of metamorphosing plaice was affected by the presence of filamentous algae. Predation by shrimps (Crangon crangon) on settling plaice larvae was higher on sand than among algae, whereas predation by crabs (Carcinus maenas) was unaffected by habitat type, suggesting a lower overall mortality of plaice in the vegetated habitat. When predators and prey were presented with a combination of the two habitats, predation by shrimps was as high as that in the sand treatment alone, whereas predation by crabs was lower than that in the two treatments with one habitat. Based on these results, an additional experiment was performed, investigating the functional response of shrimps to six densities of juvenile plaice in a sand habitat with alternative prey present. The proportional mortality of juvenile plaice (12-16 mm total length (TL)) was density-dependent and was best described by a type III (sigmoid) functional response of the predatory shrimps. The results suggested that the combined predation pressure from shrimps and crabs was lower among algae than on sand, but settling plaice and predatory shrimps chose the sand habitat. Plaice densities in the sigmoid part of the obtained functional response curve represented normal to high field densities of plaice on the Swedish west coast, suggesting that shrimp predation could have a stabilising effect on plaice recruitment. The formation of macroalgae mats could therefore lead to a concentration of plaice juveniles in the remaining sand habitat and increased mortality through density-dependent predation by shrimps.  相似文献   

19.
The ability to assign lethal traces left on prey to particular durophagous predators enhances our understanding of predation pressure in the fossil record. To determine whether stone crabs (Menippe mercenaria Say 1818) leave diagnostic traces in the act of feeding on hard clams (Mercenaria mercenaria Linnaeus 1758), live clams were offered to crabs in laboratory aquaria over several months and the fragments produced during predation were examined for diagnostic breakage patterns. These fragments were then compared both macroscopically and using scanning electron microscopy to the fracture patterns produced by tumbling clams in a rock tumbler which simulated breakage during transport in the surf zone, and crushing clams using an Instron which simulated breakage resulting from sediment compaction. Fossil specimens of Mercenaria mercenaria were also examined to determine whether the criteria for recognizing predation traces generated experimentally could be recognized. While not all acts of predation produce diagnostic traces, when larger fragments (greater than 50% shell remaining) are produced during feeding, predatory-diagnostic breakage ranges from 70 to 80%. Macroscopic breakage patterns generated during the predation experiments were also present in fossil specimens. Damage caused by abiotic mechanisms (tumbling and crushing) is highly unlikely to be confused with damage produced by this predator.  相似文献   

20.
Leptodora kindti is a very efficient invertebrate predator. Its searching mode of preying is tactile. The setae of the first thoracic limb act as mechanoreceptors, the other thoracic limbs, thorax and head together form the shape of an open basket in which after encounter the prey is pushed in by the aid of the first thoracic limbs and the furca. In Neusiedler See, small individuals of Diaphanosoma brachyurum (0.6–0.9 mm) are the preferred prey, rarely copepods are taken. The predation rate is influenced by temperature, prey density and predator size and varies between less than one and 12 prey items per predator per day. At high predator densities, Leptodora will have a substantial effect on the Diaphanosoma population of Neusiedler See.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号