首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some systems, the identity of a prey species' dominant predator(s) may not be constant over time. In cases in which a prey species exhibits different responses to various predator species, such changes in predator identity may have population-wide consequences. Our goals were to determine (1) whether mortality of and refuge use by the grass shrimp, Palaemonetes pugio, were predator-specific, and (2) how effects of prey size and habitat interacted with predator type. Striped bass (Morone saxatilis) exerted twice as much predation pressure as mummichog (Fundulus heteroclitus), although not equally as great on large (female) and small (male) shrimp. Mummichog, which fed preferentially on large shrimp, forced a partitioning of habitat between the two shrimp size classes. In contrast, large and small shrimp occupied similar habitats when subjected to striped bass, which fed on both size classes equally. Refuge use of grass shrimp depended on predator type. In the presence of mummichog, which occupied shallower depths in the water column than striped bass, shrimp stayed deep and close to structural habitat. Striped bass, which were deeper, caused shrimp to move high in the water column away from structural habitat. When both predators were present, shrimp distribution was similar to that when only striped bass were present, striped bass predation rate was enhanced, and overall mortality was higher than with either predator alone. Results suggest that at times when mummichogs are the dominant predators, large (female) shrimp experience higher predation than small (male) shrimp and are physically separated from their potential mates. When striped bass are more abundant, male and female shrimp may share a similar, shallow, less structure-oriented distribution and be subjected to higher mortality. When both predators are present, mortality rates may be higher still. This predator-, size-, and habitat-specificity of grass shrimp behavior suggests significant population and distribution consequences of fluctuating predator guilds and fluctuating cover of structural habitats in the field.  相似文献   

2.
This study demonstrates experimentally that coarse woody debris (CWD) can provide refuge from predation in aquatic habitats. In the Rhode River subestuary of Chesapeake Bay, Maryland, (USA), we (1) measured the abundance of CWD, (2) examined the utilization of CWD by mobile epibenthic fish and crustaceans, and (3) tested experimentally the value of CWD as a refuge from predation. CWD was the dominant above-bottom physical structure in shallow water, ranging in size from small branches (<2 cm diameter) to fallen trees (>50 cm diameter). In response to experimental additions of CWD, densities of common epibenthic cpecies (Callinectes sapidus, Fundulus heteroclitus, Fundulus majalis, Gobiosoma bosc, Gobiesox strumosus, Palaemonetes pugio, and Rithropanopeus harrisii) increased significantly compared to control sites without CWD. In laboratory experiments, grass shrimp (P. pugio) responded to predatory fish (F. heteroclitus and Micropogonias undulatus) by utilizing shelter at CWD more frequently than in absence of fish. Access to CWD increased survivorship of grass shrimp in laboratory and field experiments. These experimental results (1) support the hypothesis, commonly proposed but untested for freshwater habitats, that CWD can provide a refuge from predation for epibenthic fish and invertebrates and (2) extend the recognized functional importance of CWD in freshwater to estuarine and marine communities. We hypothesize that CWD is an especially important refuge habitat in the many estuarine and freshwater systems for which alternative physical structure (e.g., vegetation or oyster reefs) are absent or in low abundance.  相似文献   

3.
Animals exhibit diel periodicity in their activity in part to meet energy requirements whilst evading predation. A competing hypothesis suggests that partitioning of diel activities is less important because animals capitalise on opportunity. To test these hypotheses we examined the diel activity patterns for two cyprinid minnows, chubbyhead barb Barbus anoplus and the Eastern Cape redfin minnow Pseudobarbus afer that both occur within headwater streams in the Eastern Cape, South Africa. Chubbyhead barbs exhibited consistent nocturnal activity based on both field and laboratory observations. Due to the absence of fish predators within its habitat, its nocturnal behaviour suggests a response to the cost associated with diurnal activity, such as predation risk by diving and wading birds. In contrast, redfin minnows showed high diurnal activity and a shoaling behaviour in the wild, whereas, in the laboratory, they showed high refuge use during the diel cycle. Despite their preference for refuge in the laboratory, they were diurnally active, a behaviour that was consistent with observations in the wild. The diurnal activity of this species suggests a response to the cost associated with nocturnal activity. Such a cost could be inferred from the presence of the longfin eel, a native predator that was active at night, whereas the daytime shoaling behaviour suggests an anti-predator mechanism to diurnal visual predators. The implications of these findings relate to the impacts associated with the potential invasions by non-native piscivores that occur in the mainstem sections. Diurnal activity patterns for redfin minnows, that are IUCN-listed as endangered, may, in part, explain their susceptibility to high predation by visual non-native piscivores, such as bass and trout. In contrast, the nocturnal habits of chubbyhead barbs suggest a probable pre-adaptation to visual predation. The likelihood of invasion by nocturnally-active sharptooth catfish Clarias gariepinus, however, may compromise this prior advantage.  相似文献   

4.
Diel migration is a common predator avoidance mechanism commonly found in temperate water bodies and increasingly in tropical systems. Previous research with only single day and night samples suggested that the endemic shrimp, Halocaridina rubra, may exhibit diel migration in Hawaiian anchialine pools to avoid predation by introduced mosquito fish, Gambusia affinis, and perhaps reverse migration to avoid the predatory invasive Tahitian prawn, Macrobrachium lar. To examine this phenomenon in greater detail, we conducted a diel study of H. rubra relative abundance and size at 2-h intervals in three anchialine pools that varied in predation regime on the Kona-Kohala Coast of Hawai‘i Island. We found two distinct patterns of diel migration. In two pools dominated by visually feeding G. affinis, the abundance of H. rubra present on the pool bottom or swimming in the water column was very low during the day, increased markedly at sunset and remained high until dawn. In contrast, in a pool dominated by the nocturnal predator M. lar, H. rubra density was significantly lower during the night than during the day (i.e., a pattern opposite to that of shrimp in pools containing fish). In addition, we observed that the mean body size of the shrimp populations varied among pools depending upon predator type and abundance, but did not vary between day and night in any pools. Our results are consistent with the hypothesis that H. rubra diel migratory behavior and size distributions are influenced by predation regime and suggest that diel migration may be a flexible strategy for predator avoidance in tropical pools where it may be a significant adaptive response of endemic species to introduced predators.  相似文献   

5.
Alto BW  Griswold MW  Lounibos LP 《Oecologia》2005,146(2):300-310
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes.  相似文献   

6.
Nonlethal effects of predators on prey behaviour are still poorly understood, although they may have cascading effects through food webs. Underwater observations and experiments were conducted on a shallow fringing coral reef in Malaysia to examine whether predation risks affect diel activity, habitat use, and survival of the rhynchocinetid shrimp Cinetorhynchus hendersoni. The study site was within a protected area where predatory fish were abundant. Visual surveys and tethering experiments were conducted in April–May 2010 to compare the abundance of shrimps and predatory fishes and the relative predation intensity on shrimps during day and night. Shrimps were not seen during the day but came out of refuges at night, when the risk of being eaten was reduced. Shrimp preferences for substrata of different complexities and types were examined at night when they could be seen on the reef; complex substrata were preferred, while simple substrata were avoided. Shrimps were abundant on high-complexity columnar–foliate Porites rus, but tended to make little use of branching Acropora spp. Subsequent tethering experiments, conducted during daytime in June 2013, compared the relative mortality of shrimps on simple (sand–rubble, massive Porites spp.) and complex (P. rus, branching Acropora spp.) substrata under different predation risk scenarios (i.e., different tether lengths and exposure durations). The mortality of shrimps with short tethers (high risk) was high on all substrata while, under low and intermediate predation risks (long tethers), shrimp mortality was reduced on complex corals relative to that on sand–rubble or massive Porites spp. Overall, mortality was lowest on P. rus. Our study indicates that predation risks constrain shrimp activity and habitat choice, forcing them to hide deep inside complex substrata during the day. Such behavioural responses to predation risks and their consequences for the trophic role of invertebrate mesoconsumers warrant further investigation, especially in areas where predatory fishes have been overexploited.  相似文献   

7.
Mamani  A.  Koncurat  M. L.  Boveri  M. 《Hydrobiologia》2019,829(1):19-29

Whether macrophytes offer an effective refuge for zooplankton in all shallow lakes is subject to debate. To explore potential constraints between different predator threats and the related habitat choice by zooplankton, we conducted a mesocosm experiment in 12 large-sized pools mimicking the nearshore environment with part of its length being covered by submersed macrophytes (Egeria densa) and holding a mixed zooplankton community. Four treatments were used: (i) young zooplanktivorous fish (3 silverside, Odontesthes bonariensis) in the “open-water” zone; (ii) macroinvertebrate predator (31 grass shrimp, Palaemonetes argentinus) in the vegetated zone; (iii) both, fish in the open-water and shrimp in the vegetated zones; and (iv) control with no predators. Our results show specific effects of each predator on the abundance, composition, and size of cladocerans. Regarding distribution, in control and shrimp mesocosms, no differences were found between the two zones, while cladocerans were clearly more abundant in the vegetated side in the presence of fish. When both fish and shrimp were present, cladocerans preferred the vegetated zone too, but in a smaller proportion, and their abundance was less. The presence of predatory macroinvertebrates in vegetated littoral zone reduces the refuge value of this habitat, at least for cladocerans.

  相似文献   

8.
Postsettled age 0 Atlantic cod (Gadus morhua) seek refuge from predation in eelgrass (Zostera marina) habitat within shallow, coastal nurseries. Laboratory and field experiments have demonstrated that predation risk on small fish is reduced in habitats of greater structure compared to less complex or barren environs. To determine if predation risk is linked to the areal extent of eelgrass coverage, we tested the hypothesis that predation risk of age 0 cod decreases with increasing eelgrass patch size. Predation on tethered age 0 cod (G. morhua and G. ogac) was quantified in eelgrass patches (1-80 m2) at three sites in northeastern Newfoundland, Canada, during September and October 1999 and 2000. Based on evidence of edge effects in terrestrial landscapes, we also tested the hypothesis that predation is elevated at ecotones separating eelgrass from adjacent barren mud substrate. We examined predation at the edge (i.e., 0 m) and both 5 and 10 m from this edge into and away from eelgrass cover along an 18 m long barren mud-gravel and eelgrass boundary, at two sites. Logistic regression analysis showed that the risk of predation, as measured by the odds ratio, increased with area over a small range of patch sizes (1-35 m2 in 1999). When the study was extended to a wider range of patch sizes (1-80 m2) in 2000, a parabolic relationship emerged, with patches on the order of 25 m2 providing the least safety and the largest patches (80 m2) providing the most safety. Predation on tethered cod was highest at the edge of eelgrass patches, compared with barren and eelgrass locations; predation generally decreased with distance from the eelgrass boundary. Our results are consistent with the hypothesis that predators are drawn to large patches of eelgrass because of increased prey numbers, that predators increase their success by searching edges, and that this results in greatest predation risk to prey in isolated patches of intermediate size.  相似文献   

9.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

10.
Invasion by Phragmites australis into tidal marshes previously dominated by Spartina alterniflora is viewed as a serious environmental threat along the Atlantic coast of the US, but little is known about the relative habitat value of the two plants for most estuarine species. This study was designed to investigate behavioral responses, in the laboratory, of three species to the two plants. Fiddler crabs, Uca pugnax, grass shrimp, Palaemonetes pugio, and larval mummichogs (killifish), Fundulus heteroclitus were introduced into aquaria with a bare area, an area with dead Phragmites stems, and an area with dead Spartina stems. All species distributed themselves equally between the Spartina and the Phragmites. The behavior of larval mummichogs in the tanks with predators was observed. In the presence and absence of stems, they utilized the surface of the water as a refuge, as well as the stems, when present. This behavior was equally as effective as being among the stems in promoting larval survival. In microcosms with blocks of marsh with living plants, fiddler crabs and grass shrimp again did not show a preference for either species of plant, while juvenile and adult mummichogs were not consistent. Small fish chose Spartina when in the small microcosm and had no preference in the large one. Large fish chose Spartina in the small microcosm and Phragmites in the large one. Predation by adult mummichogs on grass shrimp was comparable in Spartina and Phragmites microcosms, and predation on tethered shrimp was equivalent in adjacent Spartina and Phragmites marshes in the field.  相似文献   

11.
Macrobenthic invertebrates are an important food source for higher trophic levels in freshwater and marine habitats, yet the importance of predation impacting regular seasonal changes in macrobenthos abundance remains unclear. Benthic invertebrates and transient marine species in temperate estuaries display inverse patterns of seasonal abundance, suggesting a link between predation and summer macrobenthos abundance minima. We conducted manipulative caging experiments to test the importance of predation by white shrimp (Litopenaeus setiferus) in regulating estuarine subtidal macrobenthos densities. We predicted greater declines in macrobenthos densities with increased shrimp densities due to predation rather than disturbance and macrobenthos emigration. Using these field and laboratory data, we estimate whether white shrimp predation can significantly contribute to the macrobenthos seasonal abundance minima observed in long-term monitoring data.White shrimp predation was measured in the field using 7-d predator enclosure/exclusion experiments. Within the uppermost 0-2 cm of sediment, total macrobenthos densities decreased within shrimp enclosure cages using 12 or 36 shrimp m− 2. Laboratory experiments distinguished between the effects of shrimp predation versus shrimp disturbance and macrobenthos emigration. Shrimp predation significantly reduced macrobenthos densities, while effects of shrimp disturbance and macrobenthos emigration were not significant in these experiments. Despite the impacts from other ambient predators and other abiotic factors, white shrimp were clearly capable of driving subtidal macrobenthos from their annual maximum density in winter/spring to their summertime minimum density.  相似文献   

12.
Age-0 brown trout, Salmo trutta, inhabit shallow and slow-flowing habitats where they can easily maintain stationary swimming positions. However, recent results have shown that they use deeper and faster habitats during daylight than at night, suggesting the occurrence of a nocturnal movement toward stream-margin habitats. Experiments were conducted to describe precisely when this diel pattern of habitat use appears during ontogeny. In two indoor channels, free-embryo brown trout were deposited under the gravel. When emerging, alevins were free to choose between margin (2 cm deep, 0-2 cm s-1) or deep habitat (12 cm, 2-4 cm s-1), or to leave the channel (upstream or downstream). During the week of emergence, upstream and downstream catches, fish habitat use (deep habitat or margin), and fish behavior (resting or swimming) were measured by direct observations and trap counts. Three treatments were performed: (1) fish artificially fed on drifting invertebrates, (2) fish exposed to predators (bullhead, Cottus gobio), and (3) control channels (no food, no predator). In control and food channels, a diel pattern of habitat use was observed 1-2 days after the emergence started. Most fish rested in the margin at night, whereas they moved towards the deep habitat during daylight to hold stationary swimming positions. In the presence of bullhead, most trout were cryptic, and visible fish stood in the margin during both daylight and at night. The importance of predation risk and foraging behavior on the ontogeny of the diel pattern of habitat use is discussed. Results support the direct development without larva from free-embryo via alevin in brown trout.  相似文献   

13.
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced.  相似文献   

14.
Predators are important natural enemies, often responsible for preventing pest population outbreaks of in many crops. Complementarity in resource use involves spatial or temporal segregation of predators, which can result in better biological control when several species of natural enemies share a prey. In this study, we investigated the seasonal, spatial and diel segregation of Acyrthosiphon pisum predators and its predation in alfalfa fields, by setting out cards with sentinel aphids, and making observations every 3 h for a 24 h period. A temporal and spatial segregation of predators was observed. Coccinellids were the most abundant predators, representing 51% of the total observations, followed by syrphid larvae. Coccinellids were also responsible for high levels of predation throughout the year, although the species responsible varied from spring to summer and autumn. On the other hand, syrphids were only found in spring and summer, while spiders only in autumn. Predator species also differed on their preferred sites for predation, with Heteropterans and syrphids found on the foliage, the spider Neomaso articeps only on the ground, and coccinellid and Anyphaenidae species on both sites. The two main predator groups also showed distinct diel patterns, with coccinellids observed only during day and syrphids only during night. This predatory activity corresponded with aphid predation, observing more predation in spring, on the foliage and during the day time. The proportion of predators observed preying on cards in the different seasons did not corresponded tightly with their field abundance, particularly in the case of coccinellids, which maintained high levels of predation in spite of great variations in its field abundance. Our results support the hypothesis of a spatio-temporal segregation of the predators associated with A. pisum in alfalfa, which might be beneficial for the outcome of biological control of this pest.  相似文献   

15.
The decline in kelp habitat on coastal reefs resulting from changes in ocean climate and the distribution and abundance of herbivorous species is common in many temperate regions of the world. Kelp habitat is highly productive, biodiverse and provides a complex habitat into which many organisms recruit, including spiny lobsters, such as the Australasian red spiny lobster, Jasus edwardsii. The displacement of kelp habitat by less-complex barren reef habitat has the potential to influence the risk of predation for early juvenile lobsters. Therefore, relative predation risk on the juvenile spiny lobster, J. edwardsii, was compared for kelp and barren habitats on the northeast coast of New Zealand using juvenile lobsters held in transparent containers and recording predators with a video recorder. In total, 188 predation attempts were observed within 420?h of video recordings gathered over 3 weeks of sampling. There was an overall higher predation risk in barren habitats. Daytime predation attempts were higher in barren compared to kelp habitat; however, there was no difference between the habitats for night time, dawn or dusk observations, when juvenile lobsters are emergent from shelters and vulnerable to predation. Similar numbers of predatory species were identified in kelp (13) and barren habitat (12). Other factors, such as food availability and time spent away from shelter, especially during night and crepuscular periods, need consideration in future studies when investigating the cause of differences in juvenile lobster mortality among habitats.  相似文献   

16.
The North Atlantic gastropod Littorina littorea exhibits a characteristic “intertidal” distribution: the snail is abundant in the littoral zone but scarce in the shallow subtidal and the relatively few subtidal individuals are larger (in shell size) on average than those in the intertidal zone. For highly mobile species like L. littorea, this vertical distribution is primarily determined by directional movement. Biotic and abiotic factors vary across tidal heights, and natural selection for movement to shore levels where fitness is maximized provides the ultimate (evolutionary) explanation for vertical distribution patterns. In this study, we asked whether variation in growth rate and/or predation pressure among tidal heights provide an ultimate explanation for vertical gradients in L. littorea size and abundance. We used a cage experiment to compare juvenile growth rate among tidal heights and a series of field and laboratory experiments to examine variation in predation pressure among tidal heights and snail size classes. Juvenile growth rates were highest in the low intertidal zone, declining at both higher and lower levels. Predation risk for tethered L. littorea increased with both decreasing tidal height and decreasing body size (shell height). Almost all tethered prey were consumed by shell- breaking predators and a census revealed that the two most abundant such predators were the crabs Carcinus maenas and Cancer borealis. Laboratory feeding experiments were used to compare size-dependent prey vulnerability and prey-size preferences for these two key predators. We found that L. littorea vulnerability decreased with increasing snail size and increased with increasing size of both predator species. However, whereas C. borealis were capable of consuming even the largest L. littorea, most Carcinus were unable to feed on individuals larger than 10 mm in shell height. Additionally, C. borealis preferred larger sizes of L. littorea than did Carcinus. Thus, Carcinus, which co-occurs with L. littorea in the intertidal, is a much less effective predator than C. borealis, which is found primarily in the subtidal. We conclude that predation on L. littorea by C. borealis and other subtidal consumers has resulted in the scarcity of this ecologically important grazer in the subtidal. This effect has been produced both through direct predation and by imposing strong selection for movement of L. littorea to higher tidal zones.  相似文献   

17.
1. Zooplankton use macrophytes as day-time refuge areas when trying to escape from pelagic predators. But macrophytes can also host a diverse and abundant macroinvertebrate assemblage and zooplankton are also likely to face predacious macroinvertebrates once they enter the littoral zone. This study aimed to elucidate the role of macroinvertebrates in determining the refuge capacity of macrophytes.
2. We conducted a field enclosure experiment using plastic bags and complementary laboratory feeding trials to test how macroinvertebrates counteract the benefits to zooplankton of the macrophyte refuge. The field experiment consisted of three treatments with different macroinvertebrate assemblages: without predators (WP), low abundance and diversity (LAD) and high abundance and diversity of predators (HAD – which represents lake conditions).
3. Populations of Diaphanosoma brachyurum , Bosmina huaronensis and Moina micrura (Cladocera) and of both male and female Notodiaptomus incompositus (Copepoda, Calanoida) declined (by nearly 80%) in the presence of HAD in comparison to WP and LAD treatments.
4. Feeding trials revealed that Buenoa sp. (backswimmer), adults of Palaemonetes argentinus (grass shrimp) and Cyanallagma interruptum (damselfly) had a significant negative impact on cladocerans ( D. brachyurum, B. huaronensis ) and the calanoid copepod population (males, females and copepodites). These predators showed a strong predation effect ranging from 75% to 100% reductions of zooplankton populations.
5. The refuge effect offered by macrophytes to zooplankton depends on and is balanced by the predacious macroinvertebrate assemblage that plants host. The risk of confronting littoral predators is high and macroinvertebrate presence can turn the macrophytes into risky areas for zooplankton.  相似文献   

18.
F.P. Gelwick 《Oecologia》2000,125(4):573-583
Non-lethal effects of predators on prey behavior can mediate trophic cascades, but the extent of effects depends on habitat characteristics and risk sensitivity of prey. Furthermore, predation risk for stream organisms varies along the depth gradient and strongly influences their behavior. Grazing minnows (Campostoma anomalum) and crayfish (Orconectes virilis) are both prey for largemouth bass (Micropterus salmoides) in streams, but differ in their predator-avoidance behavior. This study contrasts the effects and mechanisms of non-lethal trophic cascades on the spatial distribution of filamentous green algae among stream pools and along a depth gradient within pools. Presence/absence of a largemouth bass was crossed with four combinations of the two grazer species (0 grazers, 30 minnows, 30 crayfish, and 15 each) in outdoor, experimental streams. Grazer densities were maintained by restocking. I used geostatistics to quantify spatial patterns of predator and grazer habitat use, height of filamentous algae in the water column, and spatial covariation of water depth with algal height, and depth with grazer habitat use. In streams with only minnows, bass were sedentary, and hid within tall algae in a single "bass pool". In pools with grazed algae, bass actively pursued prey within and among pools and used deeper water. This set up a hierarchy of risk to grazers along the depth gradient from bass in deep water to potential risk from terrestrial predators in shallow water. Thus, minnows were more sensitive than crayfish to predation risk from bass, but less sensitive than crayfish to risk from terrestrial predators. Minnows mediated cascades at the scale of whole pools by avoiding "bass pools", but only if crayfish were absent. Crayfish avoided potential interactions both with terrestrial predators and bass by grazing and burrowing in deeper water at night (when bass were inactive), and by hiding in burrows during daytime. Crayfish without burrows avoided bass and crayfish defending burrows by using shallow edges of pools as corridors, but did not graze there. Thus, crayfish-mediated cascades were limited to pool edges. Effects of grazer identity may extend to other consumers via modification of risk for biota that use filamentous algae as either foraging or refuge habitat.  相似文献   

19.
In systems where predation plays a key role in the dynamics of prey populations, such as in Arctic rodents, it is reasonable to assume that differential patterns of habitat use by prey species represent adaptive responses to spatial variation in predation. However, habitat selection by collared (Dicrostonyx groenlandicus) and brown (Lemmus trimucronatus) lemmings depends on intra- and inter-specific densities, and there has been little agreement on the respective influences of food abundance, predators, and competition for habitat on lemming dynamics. Thus, we investigated whether predation affected selection of sedge-meadow versus upland tundra by collared lemmings in the central Canadian Arctic. We first controlled for the effects of competition on lemming habitat selection. We then searched for an additional signal of predation by comparing habitat selection patterns between 12 control plots and one large grid where lemmings were protected from predators by fencing in 1996 and 1997, but not during 5 subsequent years when we monitored habitat use in the grid as well as in the control plots. Dicrostonyx used upland preferentially over meadows and was more numerous in 1996 and 2011 than in other sample years. Lemmus was also more abundant in 1996 than in subsequent years, but its abundance was too low in the exclosure to assess whether exclusion of predators influenced its habitat selection. Contrary to the effects of competition, predation had a negligible impact on the spatial dynamics of Dicrostonyx, at least during summer. These results suggest that any differences in predation risk between the two habitats have little direct influence on the temporal dynamics of Dicrostonyx even if induced through predator–prey cycles.  相似文献   

20.
The relative contributions of males and females to incubation, and the diel schedules by which incubation is shared, are important breeding system traits. We used infra-red sensitive cameras to record incubation patterns at 13 nests of the Two-banded Plover Charadrius falklandicus in the Falkland Islands during both day and night. Because predation risk can affect incubation behaviour, we also recorded the diel pattern of nest predation in the wider study population. We found high nest attendance, female-biased incubation, and strong diel sex-roles, with females incubating during the day and males at night. We also found that incubation intermissions tended to be short but frequent, and were correlated strongly with the diel pattern of nest predations which occurred exclusively in the daylight hours (probably due to the absence of terrestrial mammals from the study site). Our results suggest that sex-roles are unusually strict in the Two-banded Plover, and that these strict sex-roles lead to inequality in incubation sharing and the level of exposure to sources of energetic cost such as disturbance by nest predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号