首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of oyster gills for the analytical determination of metallothionein (MT) concentration as a biomarker of metal exposure was investigated. Temporal variations in MT and metal concentrations (which can interfere with inter-site differences) were examined over a 7 month period (from spring to autumn) in Japanese oysters from a clean site (Bay of Bourgneuf, France) and a metal-rich site (Gironde estuary, France) as well as in individuals translocated from the clean to the contaminated area. The ratio between the annual average of MT concentrations in specimens from the clean and the metal-rich sites was 1.3. During the last 3 months of the experiment, significant differences were no longer registered between transplants and residents from the Gironde estuary. Metals concentrations in oyster gills differed consistently between the clean and the metal-rich sites (annual average ratios of 1.5, 2.7 and 9.8, respectively, for zinc, copper and cadmium) and a fast increase in metal concentrations (over a few months) was observed in transplants, mainly for cadmium. MT and soluble metal concentrations were found to be positively and significantly correlated over the period of the study. This relationship is a positive argument for a possible use of gill MT concentration as a biomarker of metal pollution in contrast to previous findings on the digestive gland, there being a smaller amount of seasonal variability in the weight of oyster gills.  相似文献   

2.
《The Histochemical journal》1996,28(10):689-701
Summary Copper (Cu), zinc (Zn) and calcium (Ca) were demonstrated histochemically by means of conventional stains (rubeanic acid for copper, dithizone for zinc, and cobalt nitrare for calcium) and by autometallography in various tissues of winkles (Littorina littorea) sublethally exposed to either copper or zinc dissolved in sea water. Rubeanic acid and dithizone procedures exhibited poor sensitivity: there was no positive reaction after fixation tissues with Bouin's fixative, and only a weak reaction after ethanol fixation. Autometallography, however, produced a positive reaction with both fixatives in the form of black silver deposits in some key cell types. In winkles not exposed to either copper nor zinc, autometallographically demonstrated metals were found in the connective tissue pore cells, the lysosomes of digestive cells, the basal lamina of the digestive tubule epithelium, and cytoplasmic granules in the epithelial cells of the stomach wall. In addition, in winkles exposed to copper, metal deposits were present in some apical cytoplasmic granules of ciliated cells in the gill epithelium, the mucous secretion of gill mucocytes, and the circulating haemocytes. In winkles exposed to zinc, metal deposits were found in the basal cytoplasmic granules of ciliated cells in the gill epithelium, the mucous secretion of gill mucocytes, the apex and basal lamina of the nephrocytes in the kidney, and the connective tissue layer surrounding the blood vessels. Additionally, calcium was demonstrated histochemically in the cytoplasm of digestive cells, the cytoplasm of the epithelial cells of the stomach wall, the mucocytes of gills, the basal lamina of the kidneys, the haemocytes, the calcium and pore cells of connective tissue, and the oocyte cytoplasm. Metals were not detected by any procedure in sperm cells, in the cytoplasmic granules of oocytes, or in the basophilic cells in the digestive tubules. In conclusion, autometallography is a highly sensitive method and provides an excellent tool to localize protein-bound copper and zinc in molluscan tissues, and its use in combination with conventional histochemical or chemical methods is highly recommended.  相似文献   

3.
  • 1.1. Activities of the three ammonia-forming enzymes, glutamate dehydrogenase, AMP deaminase and serine dehydrase (SerDH), were measured in tissues of gill, digestive diverticula, mantle and foot muscle of the brackish-water bivalve Corbicula japonica.
  • 2.2. High levels of SerDH activity were detected in gill and digestive diverticula, while the activity levels of the other two enzymes were low.
  • 3.3. The result suggests the significance of SerDH in amino acid degradation of this species.
  相似文献   

4.
This investigation attempts to determine the usefulness of autometallography to localise particular metals in certain key tissues of molluscs exposed to metal mixtures. For this purpose, winkles (Littorina littorea) removed from shell were exposed to very high concentrations of either copper (Cu), zinc (Zn) or a mixture of both metals (Cu&Zn) dissolved in sea-water for short periods of time. Protein-bound metals were detected by autometallography as black silver deposits (BSD) on histological sections of gills, foot, mantle, digestive gland/gonad complex, stomach and kidney. Copper was localised within cytoplasmic granules of gill ciliated cells, nephrocytes and stomach epithelial cells as well as within digestive cell lysosomes. Zinc was essentially found in the basal lamina (histological sense) of gill, stomach, kidney and digestive gland epithelia. BSD were also evidenced in cytoplasmic granules of pore cells present in parenchymal connective tissue of mantle, foot, gill, digestive gland and stomach. Copper and zinc concentrations were additionally calculated for the whole soft body as well as for certain organs by atomic absorption spectrophotometry (AAS). According to AAS, a synergistic phenomenon would contribute to increase the rate of Cu and Zn accumulation in presence of each other. However, after exposure to Cu&Zn autometallography did not evidence any synergistic phenomenon, and Cu and Zn were localised in their respective accumulation sites. In conclusion, autometallography might indicate the presence of certain metals in the environment irrespective of factors, such as "metal-metal interaction-like" phenomena, affecting metal concentrations in soft tissues.  相似文献   

5.
Summary Various tissues of common winkles,Littorina littorea (L.), experimentally exposed to cadmium (Cd) chloride were examined using light and electron microscopy and their elemental composition determined by X-ray microanalysis and histochemistry. Membrane granules in gill epithelial cells with paddle cilia contain carbonates, phosphates and sulphides associated with different cations in different types of granules. Traces of Cd have been found only in those granules containing sulphur and iron. Nephrocytes also contain small amounts of this metal in the cytoplasm of excretory cells. X-ray microanalysis reveals that concretions of basophilic cells are minor sites for Cd sequestration while BTAN-ASSG stain for unbound Cd indicates that most of the Cd is located within the lysosomes of digestive cells in association with proteins. Low amounts of the metal have been evidenced in the granules of epithelial mantle cells rich in sulphur. The results also indicate that hemocytes contain granules of calcium phosphate and iron sulphide. Cd is also associated to sulphur rather than to phosphate. These hemocytes may act as Cd carrier from gills to kidney and digestive gland. A hypothetical pathway for Cd accumulation and detoxification is suggested.  相似文献   

6.
Enzymatic and histopathologic alterations of the digestive gland, gill, gonad, and kidney were studied in Asian clam (Potamocorbula amurensis) in April, 1997 from each of four United States Geological Survey (USGS) stations in the San Francisco Estuary. Stations were selected based on differing body burdens of metallic contaminants in clams (Stn 4.1> 6.1> 8.1>12.5) observed over 7 years. Because no pristine sites are known within the estuary and because no laboratory-reared stocks of P. amurensis were available, clams from station 12.5 served as reference animals. Histopathologic analysis revealed no lesions in clams collected from station 12.5. Mild digestive gland atrophy and moderate distal kidney tubular vacuolation were seen in clams collected from station 8.1. Mild digestive gland atrophy, moderate kidney tubular atrophy, and moderate gill inflammation were seen in clams collected from station 6.1. Lesions found only in clams from station 4.1 were: (1) severe inflammation and moderate atrophy of primary ducts and diverticula, and decreased numbers of heterophagosomes and heterolysosomes in diverticula of the digestive gland; (2) severe gill inflammation; (3) severe kidney tubular atrophy; (4) severe ovarian and testicular inflammation and necrosis; (5) decreased numbers of mature ova; and (6) decreased number of glycogen storage cells in the ovary and testis. Localization of specific enzymes including adenosine triphosphatase (ATP), acid phosphatase (ACP), alkaline phosphatase (ALKP), gamma-glutamyl transpeptidase (GGT), and glucose-6- phosphate dehydrogenase (G6PDH) was performed and correlated, in serial sections with glycogen (PAS) and haematoxylin and eosin stains. Enzymatic analysis revealed: (1) increased digestive diverticula ATP in stations 6.1 and 4.1; (2) decreased digestive diverticula ACP in stations 6.1 and 4.1 and proximal kidney tubular ACP deficiency in station 4.1; (3) no ALKP differences among stations; (4) increased distal kidney tubular GGT at station 12.5 and decreased distal kidney tubular GGT at station 4.1; (5) decreased digestive diverticula G6PDH G6PDH in all stations except 12.5 and decreased proximal kidney tubular G6PDH in stations 8.1 and 6.1. It is possible that other anthropogenic and natural stressors may have affected the results in this study. However, the prevalence and increased severity of lesions in clams with highest metal body burden suggests a contaminant-associated etiology. Enzymatic and histopathologic biomarker alterations identified in this study were positively correlated with the metal body burden. Clams with the higher prevalence of diseases and enzyme alterations also showed a lower condition index and glycogen content in the month when histopathological assessment was performed. Further study will seek to develop enzymatic and histopathologic biomarkers for use in controlled laboratory conditions to help validatethe field study.  相似文献   

7.
Enzymatic and histopathologic alterations of the digestive gland, gill, gonad, and kidney were studied in Asian clam (Potamocorbula amurensis) in April, 1997 from each of four United States Geological Survey (USGS) stations in the San Francisco Estuary. Stations were selected based on differing body burdens of metallic contaminants in clams (Stn 4.1> 6.1> 8.1>12.5) observed over 7 years. Because no pristine sites are known within the estuary and because no laboratory-reared stocks of P. amurensis were available, clams from station 12.5 served as reference animals. Histopathologic analysis revealed no lesions in clams collected from station 12.5. Mild digestive gland atrophy and moderate distal kidney tubular vacuolation were seen in clams collected from station 8.1. Mild digestive gland atrophy, moderate kidney tubular atrophy, and moderate gill inflammation were seen in clams collected from station 6.1. Lesions found only in clams from station 4.1 were: (1) severe inflammation and moderate atrophy of primary ducts and diverticula, and decreased numbers of heterophagosomes and heterolysosomes in diverticula of the digestive gland; (2) severe gill inflammation; (3) severe kidney tubular atrophy; (4) severe ovarian and testicular inflammation and necrosis; (5) decreased numbers of mature ova; and (6) decreased number of glycogen storage cells in the ovary and testis. Localization of specific enzymes including adenosine triphosphatase (ATP), acid phosphatase (ACP), alkaline phosphatase (ALKP), gamma-glutamyl transpeptidase (GGT), and glucose-6- phosphate dehydrogenase (G6PDH) was performed and correlated, in serial sections with glycogen (PAS) and haematoxylin and eosin stains. Enzymatic analysis revealed: (1) increased digestive diverticula ATP in stations 6.1 and 4.1; (2) decreased digestive diverticula ACP in stations 6.1 and 4.1 and proximal kidney tubular ACP deficiency in station 4.1; (3) no ALKP differences among stations; (4) increased distal kidney tubular GGT at station 12.5 and decreased distal kidney tubular GGT at station 4.1; (5) decreased digestive diverticula G6PDH G6PDH in all stations except 12.5 and decreased proximal kidney tubular G6PDH in stations 8.1 and 6.1. It is possible that other anthropogenic and natural stressors may have affected the results in this study. However, the prevalence and increased severity of lesions in clams with highest metal body burden suggests a contaminant-associated etiology. Enzymatic and histopathologic biomarker alterations identified in this study were positively correlated with the metal body burden. Clams with the higher prevalence of diseases and enzyme alterations also showed a lower condition index and glycogen content in the month when histopathological assessment was performed. Further study will seek to develop enzymatic and histopathologic biomarkers for use in controlled laboratory conditions to help validatethe field study.  相似文献   

8.
Various tissues of common winkles, Littorina littorea (L.), experimentally exposed to cadmium (Cd) chloride were examined using light and electron microscopy and their elemental composition determined by X-ray microanalysis and histochemistry. Membrane granules in gill epithelial cells with paddle cilia contain carbonates, phosphates and sulphides associated with different cations in different types of granules. Traces of Cd have been found only in those granules containing sulphur and iron. Nephrocytes also contain small amounts of this metal in the cytoplasm of excretory cells. X-ray microanalysis reveals that concretions of basophilic cells are minor sites for Cd sequestration while BTAN-ASSG stain for unbound Cd indicates that most of the Cd is located within the lysosomes of digestive cells in association with proteins. Low amounts of the metal have been evidenced in the granules of epithelial mantle cells rich in sulphur. The results also indicate that hemocytes contain granules of calcium phosphate and iron sulphide. Cd is also associated to sulphur rather than to phosphate. These hemocytes may act as Cd carrier from gills to kidney and digestive gland. A hypothetical pathway for Cd accumulation and detoxification is suggested.  相似文献   

9.
10.
ABSTRACT

Water temperature is an important stressor that affects the physiological and biochemical responses of scallops. In this study, we investigated the effect of different light-emitting diodes (LEDs; red, green and blue) on oxidative stress in Argopecten irradians. PCR revealed MnSOD mRNA expression in the digestive diverticula, gill, adductor muscle and eye. CAT and HSP70 mRNA were expressed in the digestive diverticula, gill and adductor muscle. Additionally, we measured the changes in the expression of HSP70, MnSOD and CAT as well as H2O2 levels during thermal/laboratory stress. In the digestive diverticula, gill and adductor muscle, the mRNA expressions and activities and H2O2 levels significantly increased in response to thermal changes. The gene expressions and activities and H2O2 levels were significantly lower in scallops that received green LED light than in those that received no mitigating treatment. A comet assay revealed that thermal change groups had increased rates of nuclear DNA damage; however, treatment with green LED reduced the frequency of damage. The results indicated that low or high water temperature conditions induced oxidative stress in A. irradians but that green LED significantly reduced this stress.  相似文献   

11.
Ecotoxicological investigations were performed on two sets of biological models. The first one concerns marine pollution and was composed of invertebrates (molluscs and crustaceans) contaminated by stable or radioactive elements originating from wastes discharged into sea water. The second one concerns freshwater pollution and was composed of vertebrates (fish) contaminated by aluminium which was dissolved in rivers, as a consequence of an atmospheric pollution by acid rain. Mechanisms involved in the uptake, storage and elimination processes of these toxicants were studied, with a special emphasis on cellular and subcellular aspects of concentration sites. Two microanalytical methods were employed: secondary ion mass spectrometry (SIMS), using the ion microscope and the ion microprobe, and X-ray spectrometry using the electron microprobe (EMP). SIMS, which enables the visualization of trace elements, was associated with an image processing system using a highly sensitive television camera connected to an image computer. Polychromatic images were obtained, allowing to establish the cellular distribution of metal contaminants. In marine organisms, the target organs and tissues of Al, rare earth elements (Tm and La) and radionuclides (U, Pu, Am) were shown to be mainly digestive gland and exoskeleton. The target organelles were shown to be spherocrystals and lysosomes where the enzymatic lysosomal coprecipitation with phosphorus was observed. Amoebocytes, which are enzymatically equipped with lysosomal phosphatase, were involved in the phagocytic clearance of metal pollutants. In trout, two processes appeared to be involved in Al accumulation. The first one corresponds to the well known insolubilisation of Al phosphate, within lysosomes of organs devoted to uptake and excretion such as gill and kidney. The second one demonstrates that organs and tissues which cannot eliminate, such as bone, heart and brain, retain Al, exhibiting a high intracellular metal concentration; moreover, large Al deposits inducing nervous tissue destruction have been observed. Data have been discussed in connection with the relationship between man and his environment.  相似文献   

12.
Hepatic copper storage in man (Wilson's disease), Bedtington and West Highland white terriers, and white perch ( Morone americana ) is characterized by the progressive accumulation of copper in hepatic lysosomes bound to cytoprotective metallothionein. In man, saturation of the liver storage capacity results in the distribution of copper to extrahepatic tissues with multiple organ system dysfunction. To determine if extrahepatic tissue copper concentrations also increase in white perch, copper and zinc levels in liver, brain, heart, gills, serum, and bile were determined by atomic absorption spectrophotometry and compared to striped bass ( Morone saxatilis ). Results showed that brain copper concentrations in. white perch were elevated and significantly correlated with liver copper. Bile and serum copper also increased significantly with liver copper. Copper levels in heart and gill tissues were low. Liver zinc was increased in white perch but not to the same magnitude as copper, and was correlated significantly with liver copper; possibly a non-specific secondary increase related to an overall increase in hepatic metallothionein. Histochemical staining of liver with rubeimc acid for copper was proportional to copper concentrations, and clusters of positive mononuclear cells were also seen in brain and spleen. Foci of macrophages in spleen were also intensely positive with Perl's iron stain which may have been indicative of haemolysis. The patterns of copper distribution seen in white perch present a useful comparative model to study alterations in copper metabolism.  相似文献   

13.
The present study was performed to observe histopathological changes in tissues of Bithynia siamensis goniomphalos (Gastropoda, Bithyniidae) incubated in crude extract solutions of camellia (Camellia oleifera) seed and mangosteen (Garcinia mangostana) pericarp, and furthermore to estimate the molluscicidal effects of 2 plant substances. Substantial numbers of bithyniid snails were incubated in various concentrations of 2 plant solution for 24 hr. As the positive control, snails incubated in various concentrations of niclosamide, a chemical molluscicide, were used. The histopathological findings were observed in sectioned snail specimens of each experimental and control groups. The results showed that both camellia and mangosteen extracts had molluscicidal effects at 24 hr with 50% lethal concentration (LC50) at concentrations of 0.003 and 0.002 g/ml, respectively, while niclosamide had LC50 at concentrations 0.599 ppm. B. siamensis goniomphalos snail tissues (foot, gill, and digestive system) showed disruption of columnar muscle fibers of the foot, reduction of the length and number of gill cilia, numerous mucous vacuoles, and irregularly shaped of epithelial cells. Irregular apical and calciferous cells, dilatation of the digestive gland tubule, and large hemolymphatic spaces, and irregular apical surfaces, detachment of cilia, and enlargement of lysosomal vacuoles of epidermis were also shown in all groups. By the present study, it is confirmed that 2 plants, camellia and mangosteen, are keeping some substance having molluscicidal effects, and histopathological findings obtained in this study will provide some clues in further studies on their action mechanisms to use them as natural molluscicides.  相似文献   

14.
The common marine mussel Mytilus edulis collected from French coastal waters of the Channel, Atlantic Ocean and Mediterranean Sea was shown to contain lanthanum; higher levels were found in the samples collected from the Eastern Channel and more particularly from the Baie de Seine. 139La+ was detected within lysosomes of digestive gland, labial palp and gill epithelium, macrophage hemocytes and chitinous tissue. Lanthanum was always associated with high phosphorus contents in the lysosomes. Thus, lanthanum which exists in sea water at trace level is taken up by the Mussel, via gill and digestive tractus, in a soluble form and then concentrated in the form of an insoluble phosphate in the storage organelles. A comparison is made between the behaviour of lanthanides and actinides in the biological systems.  相似文献   

15.
1. Coho salmon, exposed to sublethal levels of aqueous copper (1/4 and 1/2 LC50), lost appetite and ceased growing or showed decreased rates of growth. 2. Recovery of appetite and growth rate was faster in fish exposed to 1/4 of the LC50 than in those exposed to 1/2 of the LC50. 3. Copper levels were elevated in liver gill and kidney of exposed fish with the liver tissue accumulating a much larger amount of the metal than any other tissue. 4. The concentration of liver copper became constant at about the time that growth rate recovered. 5. The exposed fish exhibited much higher resistance to elevated aqueous copper levels than did the controls. 6. The results suggest that coho salmon may become acclimated to higher levels of copper and that acclimated fish are more tolerant to copper than control animals.  相似文献   

16.
Clear nosed skate, Raja erinacea were exposed to 0.10 (control), 0.52 or 1.73 microM copper and sculpin, Myoxocephalus octodecemspinosus were exposed to 0.10 or 1.73 microM copper (as CuSO4) in Salisbury Cove seawater for up to seven days. Skate gill copper concentrations increased 40-50 fold over background in response to copper exposure at both concentrations. In comparison, sculpin gill levels only increased 3-fold. While there was no evidence for internalized copper in the skate arising from the water-borne exposure, sculpin kidneys, but not livers, exhibited elevated copper concentrations after the seven days of exposure. The marked difference in branchial copper accumulation between the skate and the sculpin likely explains why elasmobranchs appear to be more sensitive to metal exposure than most marine teleost fish. Brain tissue from both species and the skate rectal gland contained relatively high background copper concentrations. Copper exposure caused an initial transient reduction in skate plasma total ammonia (Tamm), but eventually led to elevated plasma Tamm. Despite the marked branchial copper accumulation in the skate, there was no reduction in gill Na/K-ATPase activity. Similarly, Na/K-ATPase activity in skate rectal gland and intestine, as well as in sculpin gill and intestine were not affected by copper exposure. Plasma sodium, magnesium and chloride were not affected by copper exposure in either the skate or the sculpin.  相似文献   

17.
Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO3) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy.  相似文献   

18.
Mussels, Mytilus edulis, exposed to N-nitrosodimethylamine (DMN), 100 mg DMN/liter sea water, exhibited the following tissue responses: Congestion of the larger vessels in the Leydig cell tissue and infiltration of the tissue with numerous hemocytes, well-demarcated lesions composed of hemocytes in the Leydig cell tissue, degeneration of the epithelial lining of the ducts of the digestive diverticula, and congestion of the branchial vessels with numerous hemocytes accompanied by distortion of the cilia and the ciliated columnar epithelium of the gills. Furthermore, deposition of collagen-like material in the walls of the vessels was observed. DMN also induced spawning prior to the normal spawning time.  相似文献   

19.
刀鲚幼鱼消化系统的组织形态学结构   总被引:3,自引:0,他引:3  
采用光镜和扫描电镜观察长江刀鲚(Coilia nasus)幼鱼消化系统组织形态学结构。结果显示,刀鲚体长,口裂大,含有犬齿状的颌齿和尖锥状的腭齿,具有5对鳃弓,鳃耙长度明显大于鳃丝且表面附着不规则绒毛状细齿;胃呈"Y"型,胃与肠连接处具有16~21个指状环形幽门盲囊;肠为直肠,较短,比肠长为0.241±0.080;肝分为两叶,胰为独立的器官。刀鲚口咽腔为复层鳞状上皮,含有腺体、大量椭圆形黏液细胞、少量杯状细胞及味蕾;胃黏膜都为典型的单层柱状上皮,含有较多由上皮凹陷形成的胃小凹和胃腺;幽门盲囊具有20~25个丰富的褶皱,占满大部分幽门盲囊腔,黏膜层具有微绒毛;中肠黏膜上皮最发达,形成的褶皱细长且连接成网状,单层柱状上皮与复层扁平上皮交替分布。观察结果表明,刀鲚消化系统具有典型肉食性鱼类特征。  相似文献   

20.
An examination is made of the hypothesis that endogenous 5-hydroxytryptamine (5-HT) serves as a local hormone regulating ciliary activity in the lamellibranch gill. These cilia are sensitive to exogenous 5-HT and respond to it by a prompt, sustained, and reversible rise in beat frequency; at the same time the carbohydrate metabolism is stimulated, as described elsewhere. Control gill contains small but definite amounts of endogenous 5-HT according to bioassay, fluorometry, and chromatography. The amount can be increased markedly by exposing the isolated gill to the precursor substance 5-hydroxytryptophan but not l-tryptophan. As the tissue level of 5-HT rises, the spontaneous beat frequency also rises. Both remain elevated for hours and perhaps for days. The gill of Mytilus edulis is richer than the gill of Modiolus demissus in both endogenous 5-HT and effective 5-hydroxytryptophan decarboxylase activity. Modiolus gill lacks the 5-hydroxyindole oxidase by which Mytilus gill destroys 5-HT. What if any mechanism exists in Modiolus for degrading 5-HT is not known, but monoamine oxidase is not present. The 5-HT content of Mytilus and Modiolus gill cannot be modified by treatment with reserpine or α-methyl-dopa. Which cells of the gill synthesize and destroy 5-HT has not been established, but these observations support the concept that the physiological activity of lamellibranch gill cilia is controlled by a serotonergic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号