首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holes pushed into the surface of laboratory grade CaCO3 powder reproduced visible and measurable luminescence similar to that seen and measured in coral skeletons. Heating such powder to 450 °C for 2 h did not destroy the luminescence although it did destroy luminescence in powdered coral skeleton. The effect in coral skeletal powder was probably due to carbonisation of contained organics because addition of small and increasing amounts of powdered charcoal to laboratory grade CaCO3 increasingly attenuated luminescence. Luminescent lines and bands in coral skeletons have previously been ascribed to incorporation of humic substances. However, coating laboratory grade powder with humic acid attenuates rather than enhances luminescence. Ultra-violet lamps used to display coral luminescent lines and bands emit significant amounts of violet and blue visible light. Reflection of these visible wavelengths from the surface of laboratory grade CaCO3 powder obscured luminescence of the powder. Multiple reflections within a hole in the powder resulted in absorption of the short wavelengths of visible light, including violet and blue light that would otherwise mask luminescence, and their re-emission at longer wavelengths. Luminescent bands in offshore corals were associated with the low-density regions of the annual density banding pattern. Luminescent lines in skeletons of inshore corals were in narrow regions of low-density skeleton, probably resulting from altered growth during periods of lowered salinity. Accepted: 20 April 2000  相似文献   

2.
Slices cut from skeletons of massive Porites display two types of luminescence when illuminated by ultra-violet (UV) light: (1) faint luminescent banding associated with the annual skeletal density banding pattern and (2) narrow lines of strong luminescence associated with monsoonal runoff of fresh water from nearby land. Barnes and Taylor [Barnes, D.J. Taylor, R.B. 2001a. On the nature and causes of luminescent lines and bands in coral skeletons. Coral Reefs 19, 221-230] showed how larger skeletal holes could give rise to increased luminescence—thus accounting for the link between skeletal density banding and faint luminescent banding. Work described here tests the notion that strongly luminescent lines are also regions of lower skeletal density. Experiments involving real and artificial coral skeletons indicated that likely changes in hole size in real skeletons cannot account for the amount of luminescence associated with luminescent lines. Larger particles (< 50 μm) of powdered skeleton from cut from luminescent lines were more luminescent than similar particles cut from adjacent less luminescent skeleton. However, very small particles (< 3 μm) from the two regions of skeleton showed no difference in luminescence. Since skeletal crystals would have been largely destroyed by powdering skeleton to very small particle sizes, most of the luminescence of strongly luminescent lines is probably associated with changed crystal size and packing, with changed crystal chemistry, or with a combination of these possibilities.  相似文献   

3.
Illuminating slices from massive coral skeletons under ultraviolet light can reveal bright luminescent lines in nearshore corals affected by freshwater river flows. The occurrence and intensity of these lines in long-lived corals can then be used to reconstruct past river flow and rainfall, extending the instrumental records of past tropical climate variability considerably. Earlier studies from the Great Barrier Reef, Australia, have used visual assessments of luminescent line intensity to develop semi-quantitative (though potentially subjective) indices of spatial and temporal variations in freshwater flows. Annual visual assessments and relative coral luminescence intensity (measured by fluorescence spectroscopy) and growth variables are first compared for 89 Porites coral colonies from 30 reefs throughout the length and breadth of the GBR. This demonstrates that simple visual assessments can provide useful information, in the absence of quantitative measurements, of this proxy freshwater tracer. The annual range of measured luminescence between the preceding winter minimum and summer maximum, rather than annual average or annual maximum luminescence is shown to be the most robust measure of freshwater flow. Second, from analyses of the coral colony data and over 40-century-long or longer coral core records, attention is drawn to a potential age artefact in annual average and annual maximum measured coral luminescence. These variables show a significant decline through time, similar to the observed decline in average skeletal density. Although the reasons for this decline are unknown, it could compromise interpretation of long-term variations in freshwater flows and subsequent climatic inferences. This artefact does not appear to affect the annual luminescence range which, it is concluded, is a robust proxy for inter-annual variations in river flow and rainfall.  相似文献   

4.
Inshore massive corals often display bright luminescent lines that have been linked to river flood plumes into coastal catchments and hence have the potential to provide a long-term record of hinterland precipitation. Coral luminescence is thought to result from the incorporation of soil-derived humic acids transported to the reef during major flood events. Corals far from terrestrial sources generally only exhibit dull relatively broad luminescence bands, which are attributed to seasonal changes in coral density. We therefore tested the hypothesis that spectral ratios rather than conventional luminescence intensity provide a quantitative proxy record of river runoff without the confounding effects of seasonal density changes. For this purpose, we have developed a new, rapid spectral luminescence scanning (SLS) technique that splits emission intensities into red, green and blue domains (RGB) for entire cores with an unprecedented linear resolution of 71.4 μm. Since humic acids have longer emission wavelength than the coral aragonite, normalisation of spectral emissions should yield a sensitive optical humic acid/aragonite ratio for humic acid runoff, i.e., G/B ratio. Indeed, G/B ratios rather than intensities are well correlated with Ba/Ca, a geochemical coral proxy for sediment runoff, and with rainfall data, as exemplified for coral records from Madagascar. Coral cores also display recent declining trends in luminescence intensity, which are also reported in corals elsewhere. Such trends appear to be associated with a modern decline in skeletal densities. By contrast, G/B spectral ratios not only mark the impact of individual cyclones but also imply that humic acid runoff increased in Madagascar over the past few decades while coral skeletal densities decreased. Consequently, the SLS technique deconvolves the long-term interplay between humic acid incorporation and coral density that have confounded earlier attempts to use luminescence intensities as a proxy for river runoff.  相似文献   

5.
>Two hiatuses in coral skeleton growth, associated tissue death and subsequent regrowth, were discovered while dating eight multi-century Porites coral cores collected from the central Great Barrier Reef (GBR), Australia. Cross-dating of characteristic annual luminescent lines visible in the coral core slices under UV-light (Hendy et al. 2003) accurately dated the two events to 1782–85 and 1817 a.d.. Die-off scars were observed in only one core for each event. X-radiographs and photographs taken under UV-light show the pattern of regrowth and the period taken by the coral to recover. Bioerosion, predominately by boring sponges ( Cliona spp.), of the exposed coral surface following the 1782–85 event caused a hiatus of up to 14 years' growth, with the coral taking 7–8 years to reclaim the whole surface contained within the 9-cm-diameter core. Contemporary historical and proxy-climate records indicate that El Niño climatic conditions occurred at the time of both growth discontinuities. Intense luminescence observed in corals growing continuously during the 1817 event suggests that low salinity from river runoff was a contributing factor, analogous environmental conditions to those that were associated with the 1998 bleaching event in the GBR.  相似文献   

6.
A novel mechanism for iron incorporation into coral skeletons   总被引:3,自引:0,他引:3  
Intertidal corals living in seawater with high concentrations of iron incorporate the metal into their skeletons. Cross-sections of the coral skeleton reveal orange-stained banding patterns reflecting periods of high availability of iron. The mechanism of metal incorporation involves deposition of iron compounds on to skeletal spines that are exposed as a result of temporary tissue retraction during periods of extreme stress. Subsequent tissue recovery and calcification trap the iron compounds which provide a visible environmental signature in the coral skeleton. This previously unrecognised mechanism has significant implications for the reconstruction of past environments from chemical analysis of annually-banded massive coral skeletons.  相似文献   

7.
Manganese (Mn) and iron (Fe) concentrations were measured in coral skeletons (Porites spp.) collected from the Todoroki River on Ishigaki Island, Japan, to reconstruct the history of land use in the river catchment area. We prepared (1) five bulk samples to investigate the present spatial distribution and (2) micro-samples from two long cores to study the temporal variability of sediment loading from the Todoroki River. The existing state of the elements Mn and Fe in bulk coral skeleton samples was examined by a chemical cleaning experiment. The results of the experiment suggested that Fe was not incorporated into the crystal lattice of the coral skeleton but that Mn was incorporated, as previously reported. The bulk sample data, with and without chemical cleaning, indicated that the spatial distribution of both elements in corals collected along a sampling line from the river mouth toward the reef crest was complex and most likely reflected salinity changes and the amount of suspended particulate matter. The temporal variation of Mn and Fe, in particular the variation of baseline/background levels, mainly reflected the history of land development on Ishigaki Island. In addition, Mn showed clear seasonal variability that appeared to be controlled by a combination of temperature, primary productivity, and precipitation. The results of the present study suggest that Mn may be a useful proxy for river discharge or biological activity depending on local marine conditions, if the specific behavior of Mn at the coral growth site is known.  相似文献   

8.
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef‐building corals retain information about the marine environment in their skeletons, which is an organic–inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue–skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.  相似文献   

9.
Coral core records, combined with measurements of coral community structure, were used to assess the long-term impact of multiple environmental stressors on reef assemblages along an environmental gradient. Multiple proxies (luminescent lines, Ba/Ca, δ15N) that reflect different environmental conditions (freshwater discharge, sediment delivery to the nearshore, nutrient availability and transformations) were measured in Porites coral cores collected from nearshore reefs at increasing distance from the intensively agricultural region of Mackay (Queensland, Australia). The corals provide a record (1968–2002) of the frequency and intensity of exposure to terrestrial runoff and fertilizer-derived nitrogen and were used to assess how the present-day coral community composition may have been influenced by flood-related disturbance. Reefs closest to the mainland (5–32 km offshore) were characterized by low hard coral cover (≤10%), with no significant differences among locations. Distinct annual luminescent lines and elevated Ba/Ca values (4.98 ± 0.63 μmol mol−1; mean ± SD) in the most inshore corals (Round Top Island; 5 km offshore) indicated chronic, sub-annual exposure to freshwater and resuspended terrestrial sediment that may have historically prevented reef formation. By contrast, corals from Keswick Island (32 km offshore) indicated episodic, high-magnitude exposure to Pioneer River discharge during extreme flood events (e.g., 1974, 1991), with strongly luminescent lines and substantially enriched coral skeletal δ15N (12–14‰). The reef assemblages at Keswick and St. Bees islands were categorically different from all other locations, with high fleshy macroalgal cover (80.1 ± 7.2% and 62.7 ± 7.1%, respective mean ± SE) overgrowing dead reef matrix. Coral records from Scawfell Island (51 km offshore) indicated little exposure to Pioneer catchment influence: all locations from Scawfell and further offshore had total hard and soft coral cover comparable to largely undisturbed nearshore to middle shelf reefs of the southern Great Barrier Reef.  相似文献   

10.
Coral Reefs - Some massive coral core slices reveal luminescent bands under ultraviolet light, which have been attributed to terrestrial humic acids in the skeleton. Coral luminescence has...  相似文献   

11.
The threat posed to coral reefs by changes in seawater pH and carbonate chemistry (ocean acidification) raises the need for a better mechanistic understanding of physiological processes linked to coral calcification. Current models of coral calcification argue that corals elevate extracellular pH under their calcifying tissue relative to seawater to promote skeleton formation, but pH measurements taken from the calcifying tissue of living, intact corals have not been achieved to date. We performed live tissue imaging of the reef coral Stylophora pistillata to determine extracellular pH under the calcifying tissue and intracellular pH in calicoblastic cells. We worked with actively calcifying corals under flowing seawater and show that extracellular pH (pHe) under the calicoblastic epithelium is elevated by ~0.5 and ~0.2 pH units relative to the surrounding seawater in light and dark conditions respectively. By contrast, the intracellular pH (pHi) of the calicoblastic epithelium remains stable in the light and dark. Estimates of aragonite saturation states derived from our data indicate the elevation in subcalicoblastic pHe favour calcification and may thus be a critical step in the calcification process. However, the observed close association of the calicoblastic epithelium with the underlying crystals suggests that the calicoblastic cells influence the growth of the coral skeleton by other processes in addition to pHe modification. The procedure used in the current study provides a novel, tangible approach for future investigations into these processes and the impact of environmental change on the cellular mechanisms underpinning coral calcification.  相似文献   

12.
This study investigates the nature and components of annual luminescent banding in massive Porites coral skeletons, with a view to refining the technique for using this banding to reconstruct past environmental conditions. Three-dimensional excitation-emission-matrix spectroscopy and optical fibre beam delivery have been used to investigate the luminescence properties of the bright and dull bands of solid coral. Six characteristic excitation/emission peaks have been identified: 280/450–600, 340/450, 370/470, 390/485, 420/505 and 450/530 nm. The first peak corresponds to protein-type fluorescence. The others are characteristic of humic acid luminescence. The difference in luminescence intensity between bright and dull bands has been quantified and characterised spectroscopically. The luminescence of the bright bands is up to 25% more intense than their neighbouring dull bands with the greatest increase in relative intensity in the long wavelength emission region, between 500 and 600 nm. The contribution of long-lived phosphorescence to the total luminescence intensity has been determined by time-resolved measurements on the 100 ms timescale. Both bright and dull bands show long-lived phosphorescence with decay times up to 1.5 s. This phosphorescence accounts for about 10% of the total luminescence intensity of bright bands. The difference in phosphorescence intensity between bright and dull bands is substantially greater than the difference in total luminescence intensity: the phosphorescence of bright bands is up to twice as intense as that of dull bands. This suggests that phosphorescence plays an important role in defining luminescent banding in coral. Furthermore, the large observable difference in phosphorescence between bright and dull bands indicates that measurement of phosphorescence profiles across growth bands in corals may prove to be a more sensitive indicator of past environmental conditions than measurements of total luminescence. Received: 18 March 1999 / Accepted: 20 December 1999  相似文献   

13.
Concentrations of seven heavy metals (Cu, Zn, Pb, Cd, Ni, Co and Fe) were measured in the seawater, sediments, common scleractinian reef-building corals and soft corals (Octocorallia : Alcyonacea) at seven reef sites in the Northern Red Sea: I (Hurghada), II (Ras Za’farana), III (El-Ain Al-Sukhna), IV (El-Tur), V (Sha’b Rashdan), VI (Sharm El-Sheikh) and VII (Dahab). Levels of heavy metals were considerably elevated in seawater, sediments and corals collected from reef sites exposed to increased environmental contamination, as a result of diversified natural and anthropogenic inputs. Soft corals of genera Lithophyton, Sarcophyton and Sinularia showed higher concentrations of Zn, Pb, Cd and Ni than hard coral genera Acropora and Stylophora. Soft coral Sarcophyton trocheliophorum collected from El Ain Al-Suhkna (Gulf of Suez) had greater concentration of Cu, followed by hard corals Acropora pharaonis and Acropora hemprichi. The elevated levels of Zn, Cd and Ni were reported in the dry tissue of soft coral Sinularia spp. On the other hand, the soft coral Lithophyton arboreum displayed the highest concentration of Pb at Sha’b Rashdan (Gulf of Suez) and elevated concentration of Zn at Sharm El-Sheikh. Sediments showed significantly higher concentration of Fe than corals. The higher levels of Fe in hard corals than soft corals reflected the incorporation of Fe into the aragonite and the chelation with the organic matrix of the skeleton. The greater abundance of soft corals in metal-contaminated reef sites and the elevated levels of metals in their tissue suggesting that the soft corals could develop a tolerance mechanism to relatively high concentrations of metals. Although the effects of heavy metals on reef corals were not isolated from the possible effects of other stresses, the percentage cover of dead corals were significantly higher as the concentrations of heavy metals increased.  相似文献   

14.
The pollution of the marine environment with microplastics is pervasive. However, microplastic concentrations in the seawater are lower than the number of particles entering the oceans, suggesting that plastic particles accumulate in environmental sinks. Yet, the exact long-term sinks related to the “missing plastic” phenomenon are barely explored. Sediments in nearshore biogenic habitats are known to trap large amounts of microplastics, but also the three-dimensional structures of coral reefs might serve as unique, living long-term sinks. The main framework builders, reef-building corals, have been shown to ingest and overgrow microplastics, potentially leading to a deposition of particles in reef structures. However, little is known about the number of deposited particles and the underlying processes determining the permanent deposition in the coral skeletons. To test whether corals may act as living long-term sink for microplastic, we exposed four reef-building coral species to polyethylene microplastics (200 particles L?1) in an 18-month laboratory experiment. We found microplastics in all treatment specimens, with low numbers of particles trapped in the coral tissue (up to 2 particles per cm2) and much higher numbers in the skeleton (up to 84 particles per cm3). The numbers of particles accumulated in the coral skeletons were mainly related to coral growth (i.e., skeletal growth in volume), suggesting that deposition is a regularly occurring stochastic process. We estimate that reef-building corals may remove 0.09%–2.82% of the bioavailable microplastics from tropical shallow-reef waters per year. Our study shows for the first time that microplastic particles accumulate permanently in a biological sink, helping to explain the “missing plastic” phenomenon. This highlights the importance of coral reefs for the ecological balance of the oceans and reinforces the need to protect them, not only to mitigate the effects of climate change but also to preserve their ecosystem services as long-term sink for microplastic.  相似文献   

15.

Background

Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR) associated with sunlight, however, represent a potential problem in terms of tissue damage.

Methodology/Principal Findings

By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of the otherwise harmful radiation.

Conclusions/Significance

Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels that are detrimental to most marine life.  相似文献   

16.
Dr. Oliver Weidlich 《Facies》1996,35(1):133-142
Summary Rugose corals are known from allochthonous Late Permian reefal blocks of the A1 Jil and Ba’id Formation (Hawasina Complex), Oman Mountains. In contrast to many Late Permian Rugosa found elsewhere in the Tethys, they occurred in sponge reefs and contributed to reef construction. The waagenophyllid warm water coral fauna is moderately diverse comprising cerioid, thamnasterioid, and fasciculate taxa. In contrast to sponges, chaetetids, and low-growing reefbuilders, the corals secreted diagenetically stable, most probably Mg-calcitic skeletons. Borings in coral skeletons are consequently well preserved providing important data for the interpretation of reef destructive processes. Thin-section analysis revealed three taxa of infaunal borers includingEntobia Bronn 1837, uncertain thallophyte borings, and borings of unknown bioeroders. Macroborers were more important than microborers, because of the dominance of clionid sponges. Good evidence exists also for the occurrence of two types of undetermined grazers which destroyed the coral surfaces. The amount and distribution of bioerosions is variable among different coral taxa. The fasciculate coralPraewentzelella regulare Flügel 1995 was the favorate substrate. Up to 33% of the calices were bored. Dendroid and compound corals were bored subordinately. Bioerosion of these colonies does not exceed 2%. There is good evidence for substrate preference amongst the borers. Major controlling factors affecting borer distribution are believed to be variations of skeletal density and gross morphology. The borer assemblage could not limit reef accretion significantly. Factors controlling boring activity might have been quality of substrate, sedimentation rate, rapid incrustation of substrates, and competition for food with reef constructors including sponges, chaetetids, and rugose corals.  相似文献   

17.
Rising concentrations of atmospheric carbon dioxide are acidifying the world''s oceans. Surface seawater pH is 0.1 units lower than pre-industrial values and is predicted to decrease by up to 0.4 units by the end of the century. This change in pH may result in changes in the physiology of ocean organisms, in particular, organisms that build their skeletons/shells from calcium carbonate, such as corals. This physiological change may also affect other members of the coral holobiont, for example, the microbial communities associated with the coral, which in turn may affect the coral physiology and health. In the present study, we examined changes in bacterial communities in the coral mucus, tissue and skeleton following exposure of the coral Acropora eurystoma to two different pH conditions: 7.3 and 8.2 (ambient seawater). The microbial community was different at the two pH values, as determined by denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis. Further analysis of the community in the corals maintained at the lower pH revealed an increase in bacteria associated with diseased and stressed corals, such as Vibrionaceae and Alteromonadaceae. In addition, an increase in the number of potential antibacterial activity was recorded among the bacteria isolated from the coral maintained at pH 7.3. Taken together, our findings highlight the impact that changes in the pH may have on the coral-associated bacterial community and their potential contribution to the coral host.  相似文献   

18.
Ko?odziej, B., Golubic, S., Bucur, I.I., Radtke, G. & Tribollet, A. 2011: Early Cretaceous record of microboring organisms in skeletons of growing corals. Lethaia, Vol. 45, pp. 34–45. A spectacularly preserved assemblage of microbial euendoliths, penetrating into skeletons of growing scleractinian corals, has been recognized in Early Aptian (Early Cretaceous) reef limestone of the Rar?u Mountains (East Carpathians, NE Romania). Microboring euendolithic filaments were found in five coral colonies of the suborder Microsolenina. They remained in part well‐preserved, often impregnated with iron oxides, which made them visible even in strongly recrystallized parts of coral skeletons. Filaments of a wide range of sizes (2–40 μm in diameter) were concentrated within medium parts of coral septa, oriented along the septa in the direction of the coral growth. The larger filaments were tubular, occurring in bundles and branched into finer, often tapering branches. Their behaviour and organization were quite similar to the modern euendolithic siphonalean chlorophyte Ostreobium. Filament diameters exceeded those reported for the modern species, but covered a similarly wide size range. Narrower frequently branching filaments, 4–8 μm in diameter, resemble distal branching patterns of modern Ostreobium quekettii. Some very thin filaments (ca. 1–2 μm) observed within skeleton or inside the large tubular filaments, sometimes associated with globular swellings, may represent euendolithic fungi. The recrystallization of coral skeleton had limited effect on preservation of euendoliths due to their impregnation with iron oxides; microbial euendoliths were subjected to different taphonomic changes. □Chlorophytes, Early Cretaceous, fungi, microbial euendoliths, Romania, scleractinian corals.  相似文献   

19.
One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef‐building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate‐driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species‐specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony‐scale (1–10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas emissions) interventions for the persistence of functional reef habitats.  相似文献   

20.
Zonation of macrobenthic communities (corals, algae, molluscs, sponges and echinoderms) on fringing reefs was investigated in two bays in a coral reef ecosystem (Moorea, French Polynesia). Species richness, abundance and coral cover, and species richness of macroalgae increased from the bayhead to the bay entrance. For molluscs and sponges, no general trend was observed. Species richness and abundance of echinoderms increased from the head to the entrance of Opunohu Bay, but this trend was less pronounced in Cook Bay. The gradients observed for corals, macroalgae and echinoderms were correlated with one or several of the following abiotic factors: salinity, turbidity, concentration of silicates in surface waters, and concentrations of organic carbon, carbohydrates and amino acids in the sediments. These factors are associated with terrestrial run-off via river discharge that occurs at the bayheads, where the major river is located. The high degree of confinement in the bayheads allowed the establishment of only a few tolerant macrobenthic species. Although the low diversity and abundance of corals and echinoderms seem to be a characteristic of Polynesian bays, a high diversity of corals can be found in the vicinity of the bayheads in coral reefs of the western Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号