首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The egg production of the copepod Acartia bifilosa was measured and related to environmental variables and food availability in two estuaries located in the same biogeographic region (Bay of Biscay) but showing very strong differences in abiotic and biotic features: the Gironde estuary (France) and the estuary of Mundaka (Spain). The study was conducted during the spring-summer-autumn period of 1994. Food availability was evaluated by analysing the chlorophyll a (Chl a), the particulate organic carbon (POC) and the easily extractable macromolecular compounds such as proteins, carbohydrates and lipids of the seston. The egg production of copepods was estimated from field incubations with natural water, and phytoplankton feeding of adult females was estimated by means of the gut fluorescence method. The nutritional environment of the Gironde was characterised by high amounts of suspended particulate matter (SPM) with low food value, emphasising the mainly detrital origin of the organic matter (OM). In Mundaka, the higher contribution of phytoplankton to the seston led to marked increases in particulate food value accounting for up to 35% of organic matter. The weight-specific egg production was found to be sharply higher in Mundaka (ranging from 0.2 to 0.63×10−3 day−1) than in the Gironde (ranging from 0 to 0.13×10−3 day−1), but the seasonal trend of variations was similar, the highest weight-specific egg production rates occurring in early summer and the lowest in autumn in both estuaries. Egg production was not correlated linearly with temperature since maximal egg production occurred at intermediate temperatures. In Mundaka, the egg production showed a significant positive correlation with the chlorophyll and the Chl/SPM and the POC/SPM ratios. This coupled with higher values of algal food availability (Chl a/SPM: 10 to 1870 μg g−1) and gut fluorescence (between 0.12 and 0.38 ng Chl a Eq ind−1) indicate that a herbivorous diet could cover the energy requirements of A. bifilosa and support egg production. In the Gironde, the algal food availability and the gut fluorescence were lower (Chl a/SPM: 10 to 80 μg g−1; GF: 0.09 and 0.25 ng Chl a Eq ind−1), and the egg production showed significant positive correlation with the particulate food value, suggesting that other sources of carbon rather than phytoplankton were responsible for the observed changes in egg production. Results indicate that the particular seston properties of each system may be responsible for the noticeable differences in A. bifilosa fertility among estuaries.  相似文献   

2.
Juvenile Corbicula fluminea Müller (1774) were cultured at 15.3 °C in the laboratory on eight combinations of suspended sediment and phytoplankton. Sediment concentrations were 2.6, 25, 50, and 150 mg l–1. Chlorophyll a levels were 15.6 and 62.5 µg l–1. Clam tissue growth was found to be independent of silt concentration but increased at the higher chlorophyll level (p < 0.05). The growth experiment was repeated at 24 °C with chlorophyll a concentrations of 18.9 and 112.6 µg l–1. Growth was again greater at the higher phytoplankton level (p < 0.05). These results demonstrate that Asiatic clam populations are food-limited most of the growing season in the Northern and Western portions of California's eutrophic Sacramento-San Joaquin Delta where chlorophyll a levels average less than the lower of these values. Comparisons of clam growth in the laboratory and estuary support the food limitation hypothesis as at the higher food concentration laboratory tissue growth was 2.3 and 3.8 times greater during the high and low temperature evaluations than in the estuary.  相似文献   

3.
The impact of grazing by natural assemblages of microzooplanktonwas estimated in an upwelling area (Concepción, Chile)during the non-upwelling season in 2003 and 2004. Seawater dilutionexperiments using chlorophyll a (Chl a) as a tracer were usedto estimate daily rates of phytoplankton growth and microzooplanktongrazing. Initial Chl a concentrations ranged from 0.4 to 1.4mg Chl a m–3 and phytoplankton prey biomass and abundancewere numerically dominated by components <20 µm. Phytoplanktongrowth and microzooplankton grazing rates were 0.19–0.25day–1 and 0.26–0.52 day –1, respectively.These results suggest that microzooplankton exert a significantremoval of primary production (>100%) during the non-upwellingperiod.  相似文献   

4.
To investigate the impact of microzooplankton grazing on phytoplankton bloom in coastal waters, an enclosure experiment was conducted in Saanich Inlet, Canada during the summer of 1996. Daily changes in the microzooplankton grazing rate on each phytoplankton group were investigated with the growth rates of each phytoplankton group from the beginning toward the end of bloom using the dilution technique with high-performance liquid chromatography (HPLC). On Day 1 when nitrate and iron were artificially added, chlorophyll a concentration was relatively low (4.3 μg l−1) and 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were predominant in the chlorophyll biomass. However, both the synthetic rates and concentrations of 19′-hexanoyloxyfucoxanthin declined before bloom, suggesting that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes weakened. Chlorophyll a concentration peaked at 23 μg l−1 on Day 4 and the bloom consisted of the small chain-forming diatoms Chaetoceros spp. (4 μm in cell diameter). Diatoms were secondary constituents in the chlorophyll biomass at the beginning of the experiment, and the growth rates of diatoms (fucoxanthin) were consistently high (>0.5 d−1) until Day 3. Microzooplankton grazing rates on each phytoplankton group remarkably increased except on alloxanthin-containing cryptophytes after the nutrient enrichments, and peaked with >0.6 d−1 on Day 3, indicating that >45% of the standing stock of each phytoplankton group was removed per day. Both the growth and mortality rates of alloxanthin-containing cryptophytes were relatively high (>1 and >0.5 d−1, respectively) until the bloom, suggesting that a homeostatic mechanism might exist between predators and their prey. Overall, microzooplankton grazing showed a rapid response to the increase in phytoplankton abundance after the nutrient enrichments, and affected the magnitude of the bloom significantly. High grazing activity of microzooplankton contributed to an increase in the abundance of heterotrophic dinoflagellates with 7-24 μm in cell size, the fraction of large-sized (>10 μm) chlorophyll a, and stimulated the growth of larger-sized ciliates after the bloom.  相似文献   

5.
Far more attention has been given to the short-term lethal impacts of reduced dissolved oxygen on commercially important fish and crabs than to the long-term sublethal impacts on these same species, or on lower trophic levels. This study demonstrates that chronic, sublethal effects of hypoxia on the copepod Acartia tonsa, a critical component of many pelagic coastal food webs, can lead to significant decreases in population growth. The results of laboratory experiments conducted at 15 °C (winter) and 25 °C (summer), under conditions of normoxia (Controls), sublethal hypoxia (1.5 ml l 1) and lethal hypoxia (0.7 ml l 1) show that egg production female 1 day 1 was significantly lower at 0.7 ml l 1 compared to Controls at both temperatures, while egg production female 1 day 1 was significantly lower at 1.5 ml l 1 compared to controls in both summer experiments and in one of the two winter experiments. Survival was significantly decreased in the 0.7 ml l 1 treatment compared to Controls and the 1.5 ml l 1 treatment. Copepods developed more slowly and matured at smaller adult body sizes at both temperatures under both lethal and sublethal hypoxia compared to normoxia. Under summer temperatures, egg production was reduced by hypoxia exposure on two counts: (1) exposure to hypoxia during development resulted in smaller adults, which translated into lower egg production, and (2) egg production was still significantly lower in hypoxia treatments compared to Controls even when differences in body size were taken into account. While copepods collected in winter and exposed to winter temperatures and hypoxia also matured at smaller body sizes than copepods exposed to normoxia, egg production in winter was almost entirely attributable to this reduction in body size. These results suggest that coastal hypoxia may have a significantly greater impact in the summer months, when copepod populations are most abundant and growing at their most rapid rate of the year. With the anticipated increases in global temperatures, hypoxia may have even greater impacts on pelagic food webs.  相似文献   

6.
Microzooplankton grazing rates were compared between two sites (S1 and S2) in the coastal seas of eastern Hong Kong with similar physio-chemical parameters, but different chlorophyll concentrations. During the period from March 2007 to January 2008, six sets of dilution experiments, combined with high performance liquid chromatography and phytoplankton size fractionation (< 200 μm, < 20 μm and < 5 μm), were carried out to study the microzooplankton grazing rate on phytoplankton of different taxonomic groups and sizes. Although total chlorophyll a concentrations were much higher in S1 (4.98-18.42 μg l− 1) than in S2 (0.29-1.68 μg l− 1), size composition of phytoplankton was relatively similar between the two sites. Measured as chlorophyll a, phytoplankton growth rates (− 0.84-1.91 d− 1 in S1; 0.03-2.85 d− 1 in S2) and microzooplankton grazing rates (0.00-2.26 d− 1 in S1; 0.00-1.49 d− 1 in S2) for all three size fractions were similar between the two bays. Phytoplankton growth rates and microzooplankton grazing rates measured as other pigments for phytoplankton of different size fractions did not show strong variations. Microzooplankton grazing impact, expressed as the ratio of microzooplankton grazing rate to phytoplankton growth rate, was generally higher in S1 than in S2, although the difference was not statistically significant. High microzooplankton grazing impact on alloxanthin (1.00-45.85) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

7.
Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists.  相似文献   

8.
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l–1 day–1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l–1 day–1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l–1 day–1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.  相似文献   

9.
Clonally propagated shoots of teak (Tectona grandis Linn) were cultured in vitro under photomixotrophlc (sucrose 10-40 g l-1) and photoautotrophic (sucrose-free medium) conditions in MS medium containing kinetin and benzyl amino purine (0.1 mg l-1 each). Sucrose concentrations were gradually depleted in mixotrophic cultures. Growth and fresh weight of shoot chlorophyll a, b and total chlorophyll content of leaves were estimated. In sucrose-free medium, growth and chlorophyll synthesis decreased after limited period of 2-3 subcultures, whereas they got stimulated under photomixotrophic condition with 10-30 g l-1 sucrose; optimum being the medium with 30 g l-1 sucrose. Higher concentration of sucrose (40 g l-1) inhibited shoot growth. Shoots can tolerate gradual depletion of sucrose upto a limit of 5 g l-1 under mixotrophic condition.  相似文献   

10.
The ocean is a nutritionally heterogeneous environment. For feeding larval forms, food variability has significant consequences for growth and later recruitment success. In this study, the physiological and biochemical responses to a range of different food concentrations (unfed, 4, 20, and 40 algal cells μl− 1) were examined in larvae of the asteroid, Asterina miniata. Measurements of growth, protein synthesis rates, and the energetic cost of protein synthesis were made. Under conditions of rapid growth, protein comprised a larger percent (66%) of a larva's organic biomass compared to similar-aged, slower-growing larvae (26%). Larvae fed at the highest food concentration tested (40 algal cells μl− 1) had a protein depositional efficiency of 80% (± 16%), a value 3-fold higher than larvae fed 20 algal cells μl− 1 (28% ± 11%). Also, faster-growing larvae required 3-fold less energy per unit mass of protein growth. Larvae fed 40 algal cells μl− 1 deposited protein at a respiratory cost of 65 ± 11 pmol O2 h− 1 (μg protein)− 1; larvae fed 20 algal cells μl− 1 had a cost of 192 ± 47 pmol O2 h− 1 (μg protein)− 1. While there were differences in the cost to deposit protein (i.e., protein growth, the balance of synthesis and degradation), there were no differences in the energetic cost of protein synthesis for all food concentrations tested. The energetic cost of protein synthesis was fixed at 13.8 (± 0.92) Joules (mg protein synthesized)− 1 and was independent of developmental stage, growth rates, and large changes (58-fold) in protein synthesis rates. A major conclusion from this study is that larvae grown in high-food environments not only grew faster, but did so for considerably less energy. Defining the complex relationships of food availability and metabolic efficiency will provide more accurate predictions of larval growth under variable food conditions in the ocean.  相似文献   

11.
Concern for the increasing occurrence of coastal zone hypoxia has generally focused on the direct, short-term impact of reduced dissolved oxygen (DO) concentrations on the survival of commercially important species such as fish and crabs. Copepods, especially the naupliar stages, are important pelagic food web components, yet only a few studies have considered the effect of reduced DO concentrations on their survival and population dynamics. This study considers the impact of both lethal and sublethal DO concentrations on copepods. Acartia tonsa were reared at 25 °C at saturating DO (normoxic control) and reduced (hypoxic) DO concentrations of 1.5 or 0.7 ml l−1. Oxygen concentrations were maintained in replicate flasks, by bubbling seawater with air (control), or mixtures of nitrogen and oxygen. Egg production, but not survival, was significantly higher in the controls compared to the 1.5 ml l−1 DO treatment. Survival and egg production were significantly lower at 0.7 ml l−1 DO compared to the control. The results suggest that the sublethal as well as the lethal effects of hypoxia may have important repercussions on population and community dynamics in coastal systems.  相似文献   

12.
Two growth experiments were conducted with juvenile red abalone, Haliotis rufescens and Japanese abalone, Haliotis discus hannai. The first experiment was set up to determine if nutrient levels used for co-culture of the Rhodophyte, Pacific dulse (Palmaria mollis) directly affected abalone growth. No significant differences (ANOVA; P=0.117) were found in growth of abalone cultured in either ambient seawater alone or seawater supplemented with different NaNO3 loads (1176, 1765, 2353, and 2942 μM day−1 NO3-N), NaH2PO4 (83.3 μM day−1 PO4), and a modified version of Guillard and Ryther's [Gran. Can. J. Microbiol. 8, (1962) 229] f medium containing Fe, Zn, Mn, Cu, Mo, and Co.The second experiment was designed to determine the effect of different nutrient levels on the nutritional value of P. mollis when fed to abalone. P. mollis was cultured with different NaNO3 loads (1176, 1765, 2353, and 2942 μM day−1 NO3-N) and NaH2PO4 (83.3 μM day−1 PO4) in the presence or absence of f medium trace metals (Fe, Zn, Mn, Cu, Mo, and Co). H. discus hannai showed the highest LGR and SGR when fed on P. mollis supplemented with nitrate loads ranging from 1176 to 2353 μM day−1 NO3-N. In contrast, H. rufescens showed the highest linear growth rate (LGR) when fed on P. mollis supplemented with higher nitrate loads of 2353 to 2942 μM day−1 NO3-N, while nitrate load had no significant effect on specific growth rate (SGR). Both abalone species grew better on P. mollis supplied with 0.75f+Zn (day−1) metal solution [Gran. Can. J. Microbiol. 8 (1962) 229] compared to those without trace metal additions, with H. discus hannai showing a further improvement in food conversion efficiencies (FCE).The present work shows that understanding and manipulating the culture environment of P. mollis can significantly affect growth, FCE, and daily food consumption (DFC) of H. discus hannai and H. rufescens.  相似文献   

13.
Different pilot-scale outdoor photobioreactors using medium recycling were operated in a greenhouse under different environmental conditions and the growth rates (0.1 to 0.5 day?1) obtained evaluated in order to compare them with traditional systems used in aquaculture. The annualized volumetric growth rate for Nannochloropsis gaditana was 0.26 g l?1 day?1 (peak 0.4 g l?1 day?1) at 0.4 day?1 in a 5-cm wide flat-panel bioreactor (FP-PBR). The biomass productivity achieved in this reactor was 10-fold higher than in traditional reactors, reaching values of 28 % and 45 % dry weight (d.w.) of lipids and proteins, respectively, with a 4.3 % (d.w.) content of eicosapentaenoic acid (EPA). A model for predicting EPA productivity from N. gaditana cultures that takes into account the existence of photolimitation and photoinhibition of growth under outdoor conditions is presented. The effect of temperature and average irradiance on EPA content is also studied. The maximum EPA productivity attained is 30 mg l?1 day?1.  相似文献   

14.
The aim of this study was to determine the effect of sediment grazing and burrowing activities of natural populations of Mictyris longicarpus on benthic metabolism, nitrogen flux and irrigation rates by comparing sediments taken from minimum disturbance exclusion cages and adjacent sediments subject to M. longicarpus activities. M. longicarpus reduced sediment surface chlorophyll a (approximately 77%), organic carbon (approximately 95%) and total nitrogen concentrations (approximately 99%) in comparison to ungrazed sediments. Consequently, they significantly reduced gross benthic O2 production (about 71%) and sediment O2 consumption (approximately 46%). Mean N2 fluxes showed net effluxes (276-430 μmol m−2 day−1) in the presences of M. longicarpus and net uptakes (194.09-449.21 μmol m−2 day−1) where they were excluded. The net uptake of N2 was most likely due to cyanobacteria fixing of N2, as dense microbial mats became established over the sediment surface in the absence of M. longicarpus grazing activity. Sediment irrigation/transport rates calculated from CsCl tracer dilution indicated greater irrigation rates in the exclusions (12.12-16.22 l m−2 h−1) compared to inhabited sediments (6.33-11.73 l m−2 h−1) and this was again was most likely due to the lack of grazing pressure which allowed large populations of small burrowing polychaetes to inhabit the organic matter rich exclusion sediments. As such, the main influence of M. longicarpus was the interception and consumption of transported organic material, benthic microalgae and other small infaunal organisms resulting in the removal of approximately 0.06 g m−2 day−1 of nitrogen and 12.12 g m−2 day−1 of organic carbon. This “cleansing” of the sediments reduced sediment metabolism and the flux of solutes across the sediment water interface and ultimately the heavy predation of M. longicarpus by transient species such as stingrays, results in a net loss of carbon and nitrogen from the system.  相似文献   

15.
Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8 l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (YG), specific biomass decay (b), maximum specific biomass growth rate (μmax), saturation constant (Ks) and critical retention time (Θc) were in the range of 0.990 g VSS/g CODremoved day, 0.024 day−1, 0.524 day−1, 203.433 g COD l−1 and 1.908 day, respectively.  相似文献   

16.
We examined the assimilation of Cd, Cr, and Zn by the green mussel Perna viridis under complicated food conditions, including combinations of different compositions and concentrations of food (diatom and sediment), and variable food quantity and quality during particle digestion. At different combinations of food composition and quantity (5 mg l−1 and 20 mg−1, below and above the pseudofeces production), the Cd assimilation was significantly dependent on the food composition. The Cd assimilation efficiency (AE) decreased with increasing proportions of sediments in the diets, but its assimilation was not significantly affected by food concentration. In contrast, the assimilation of Cr and Zn decreased significantly with increasing food concentrations, whereas food composition did not significantly affect their AEs. Variations in metal gut passage time accounted partially for the difference in AEs among different combinations of food composition and quantity. By changing the type of particles during metal digestion, their AEs were maintained comparably at a low particle load (1 mg l−1), suggesting that variation of food quality during digestion did not affect metal assimilation. At a higher particle load (5 mg l−1), variation of food type during digestion affected the AEs of Cr and Zn. An increase in food concentrations from 1 to 15 mg l−1 during digestion resulted in a significant decrease in the AEs of Cr and Zn bound with either sediments or diatoms. Conversely, decreasing the food concentrations from 15 to 1 mg l−1 did not affect the AEs of metals, except for Zn bound with diatoms. Overall, our results highlighted the metal-specificity in their assimilation as influenced by complicated food environments, probably caused by different metal geochemical and biological behavior in the mussels. Feeding selectivity may have a greater control on the influx rate into the mussels than metal assimilation.  相似文献   

17.
Microalgal lipids are the oils of future for sustainable biodiesel production. However, relatively high production costs due to low lipid productivity have been one of the major obstacles impeding their commercial production. We studied the effects of nitrogen sources and their concentrations on cell growth and lipid accumulation of Neochloris oleoabundans, one of the most promising oil-rich microalgal species. While the highest lipid cell content of 0.40 g/g was obtained at the lowest sodium nitrate concentration (3 mM), a remarkable lipid productivity of 0.133 g l−1 day−1 was achieved at 5 mM with a lipid cell content of 0.34 g/g and a biomass productivity of 0.40 g l−1 day−1. The highest biomass productivity was obtained at 10 mM sodium nitrate, with a biomass concentration of 3.2 g/l and a biomass productivity of 0.63 g l−1 day−1. It was observed that cell growth continued after the exhaustion of external nitrogen pool, hypothetically supported by the consumption of intracellular nitrogen pools such as chlorophyll molecules. The relationship among nitrate depletion, cell growth, lipid cell content, and cell chlorophyll content are discussed.  相似文献   

18.
Temporal variation and distribution of chlorophyll a and nutrients concentration was evaluated on the basis of field observations in August 2006 in the Gulf of Finland. Strong easterly winds in August 2006 generated an upwelling event along the Estonian coast of the Gulf of Finland. It caused a drop of the water-surface temperature and nutrient enrichment of the upper layer. At first, the chlorophyll a declined in the area affected by the upwelled water due to the strong advective transport of the chlorophyll a rich waters towards the northern coast and due to the intensive water mixing and low seed population in the upwelling waters. After stabilization of the upwelling, nutrients from the upper mixed layer were consumed fast: there were no nitrites + nitrates left one week later, and phosphate concentration was under the detection limit 2 weeks later. The smaller phytoplankton size fraction showed faster response to the upwelled nutrients compared with the bigger size fraction, showing the increase in chlorophyll a content already during the stabilization of the upwelling. The increase in chlorophyll a concentration in >20-μm size fraction at stations influenced by upwelling was observed only after the relaxation of the upwelling and formation of stratification.  相似文献   

19.
Summary Chlorophyll-a and primary production on the euphotic zone of the N-NW Spanish shelf were studied at 125 stations between 1984 and 1992. Three geographic areas (Cantabrian Sea, Rías Altas and Was Baixas), three bathymetric ranges (20 to 60 m, 60 to 150 m and stations deeper than 200 m), and four oceanographic stages (spring and autumn blooms, summer upwelling, summer stratification and winter mixing) were considered. One of the major sources of variability of chlorophyll and production data was season. Bloom and summer upwelling stages have equivalent mean and maximum values. Average chlorophyll-a concentrations approximately doubled in every step of the increasing productivity sequence: winter mixing — summer stratification — high productivity (upwelling and bloom) stages. Average primary production rates increased only 60% in the described sequence. Mean (± sd) values of chlorophyll-a and primary production rates during the high productivity stages were 59.7 ± 39.5 mg Chl-a m–2 and 86.9 ± 44.0 mg C m–2 h–1, respectively. Significant differences in both chlorophyll and primary production resulted between geographic areas in most stages. Only 27 stations showed the effects of the summer upwelling that affected coastal areas in the Cantabrian Sea and Rías Baixas shelf, but also shelf-break stations in the Rías Altas area. The Rías Baixas area had lower chlorophyll than both the Rías Altas and the Cantabrian Sea areas during spring and autumn blooms, but higher during summer upwelling events. On the contrary, primary production rates were higher in the Rías Baixas area during blooms in spring and autumn. Mid-shelf areas showed the highest chlorophyll concentrations during high productivity stages, probably due to the existence of frontal zones in all geographic areas considered. The estimated phytoplankton growth rates were comparable to those of other coastal upwelling systems, with average values lower than the maximum potential growth rates. Doubling rates for upwelling and stratification stages in the northern and Rías Altas shelf areas were equivalent, despite larger biomass accumulations during upwelling events. Low turnover rates of the existing biomass in the Rías Baixas shelf in upwelling stages suggests that the accumulation of phytoplankton was due mainly to the export from the highly productive rías, while the contribution of in situ production to these accumulations was relatively lower.  相似文献   

20.
We studied the effects of future climate change scenarios on plankton communities of a Norwegian fjord using a mesocosm approach. After the spring bloom, natural plankton were enclosed and treated in duplicates with inorganic nutrients elevated to pre-bloom conditions (N, P, Si; eutrophication), lowering of 0.4 pH units (acidification), and rising 3°C temperature (warming). All nutrient-amended treatments resulted in phytoplankton blooms dominated by chain-forming diatoms, and reached 13–16 μg chlorophyll (chl) a l−1. In the control mesocosms, chl a remained below 1 μg l−1. Acidification and warming had contrasting effects on the phenology and bloom-dynamics of autotrophic and heterotrophic microplankton. Bacillariophyceae, prymnesiophyceae, cryptophyta, and Protoperidinium spp. peaked earlier at higher temperature and lower pH. Chlorophyta showed lower peak abundances with acidification, but higher peak abundances with increased temperature. The peak magnitude of autotrophic dinophyceae and ciliates was, on the other hand, lowered with combined warming and acidification. Over time, the plankton communities shifted from autotrophic phytoplankton blooms to a more heterotrophic system in all mesocosms, especially in the control unaltered mesocosms. The development of mass balance and proportion of heterotrophic/autotrophic biomass predict a shift towards a more autotrophic community and less-efficient food web transfer when temperature, nutrients and acidification are combined in a future climate-change scenario. We suggest that this result may be related to a lower food quality for microzooplankton under acidification and warming scenarios and to an increase of catabolic processes compared to anabolic ones at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号