首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Noradrenaline (1-10 microM) inhibited Ca2+-induced insulin secretion from electrically permeabilised islets of Langerhans with an efficacy similar to that for inhibition of glucose-induced insulin secretion from intact islets. The inhibition of insulin secretion from permeabilised islets was blocked by the alpha 2-adrenoreceptor antagonist, yohimbine. Adenosine 3',5'-cyclic monophosphate (cAMP) did not relieve the noradrenaline inhibition of Ca2+-induced secretion from the permeabilised islets, although noradrenaline did not affect the secretory responses to cAMP at substimulatory (50 nM) concentrations of Ca2+. These results suggest that catecholamines do not inhibit insulin secretion solely by reducing B-cell adenylate cyclase activity, and imply that one site of action of noradrenaline is at a late stage in the secretory process.  相似文献   

2.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

3.
Current chemiosmotic models of exocytosis ascribe an essential role to the influx of extracellular monovalent anions or cations into the secretory granules apposed to the plasma membrane. These hypotheses were tested by measuring insulin release in sucrose media devoid of monovalent ions. A small response to glucose (25% of controls) was still observed, which could be potentiated by isobutylmethylxanthine and suppressed by cobalt or low temperature. Substitution of Ba2+ for Ca2+ triggered a practically normal release of insulin that was inhibited by blockers of Ca2+ channels (cobalt or D 600) and abolished by low temperature. These results show that insulin release remains possible in the absence of extracellular monovalent ions and, therefore, that the chemiosmotic models of exocytosis do not entirely apply to insulin release.  相似文献   

4.
Adenosine 3',5-cyclic monophosphate (cAMP) was shown to stimulate insulin secretion from electrically permeabilised islets of Langerhans incubated in Ca2+/EGTA buffers. cAMP-induced insulin secretion occurred in the presence of either sub-stimulatory (50 nM) or stimulatory (greater than 100 nM) concentrations of Ca2+. Similar effects on secretion were obtained in response to 8-bromo-cAMP (8-Br-cAMP) or the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine. Forskolin (0.2-20 microM) increased adenylate cyclase activity and enhanced insulin secretion from the permeabilised islets. These results suggest that, in electrically permeabilised islets, cAMP-induced insulin secretion is not dependent on changes in cytosolic Ca2+.  相似文献   

5.
A method has been devised for the isolation of a secretory granule fraction from isolated rat islets of Langerhans. The islets were homogenized in buffered sucrose, and the homogenate was separated into nuclear, mitochondrial, secretory granule, and microsomal fractions by differential centrifugation. The secretory granule fraction was purified by differential centrifugation in discontinuous sucrose density gradients. A greater degree of purification could be achieved by the use of two successive gradients of this type, although the final yield was greatly reduced. Biochemical and morphological characterization of the fractions was obtained; the secretory granule fraction contained both insulin and glucagon. The limiting membranes of the granules remained intact and the general appearance of the granules was similar to that seen within the whole islet cells.  相似文献   

6.
The conversion of proglucagon and proinsulin by secretory granules isolated from both prelabeled and unlabeled anglerfish islets was investigated. Either granules isolated from tissue labeled with [3H]tryptophan and [14C]isoleucine or [35S]cysteine, or lysed granules from unlabeled tissue to which exogenously labeled prohormones had been added were incubated under various conditions. Acetic acid extracts of these granule preparations were analyzed for prohormone and hormone content by gel filtration. Both prelabeled and lysed, unlabeled secretory granules converted radiolabeled precursor peptides (Mr 8,000- 15,000) to labeled insulin and glucagon. The accuracy of the cleavage process was established by demonstrating comigration of products obtained from in vitro cleavage with insulin and glucagon extracted from intact islets using electrophoresis and high-pressure liquid chromatography (HPLC). The pH optimum for granule-mediated conversion was found to be in the range of pH 4.5-5.5. Conversion of both proglucagon and proinsulin by secretory granules was significantly inhibited in the presence of antipain, leupeptin, p- chloromercuribenzoate (PCMB) or dithiodipyridine (DDP) but not chloroquine, diisopropyl fluorophosphate, EDTA, p-nitrophenyl guanidinobenzoate, soybean trypsin inhibitor, or N-p-tosyl-L-lysine chloromethyl ketone HCl. The inhibitory action of PCMB and DDP was reversed in the presence of dithiothreitol. Both membranous and soluble components of the secretory granules possessed significant converting activity. HPLC and electrophoretic analysis of cleavage products demonstrated that the converting activities of the membranous and soluble components were indistinguishable. The amount of inhibition of proinsulin and proglucagon conversion caused by 600 micrograms/ml porcine proinsulin was significantly lower than that caused by the same concentration of unlabeled anglerfish precursor peptides. These results indicate that the proinsulin and proglucagon converting enzyme(s) in the anglerfish pancreatic islet is a unique intracellular thiol proteinase(s) that may be granule membrane-associated and may require the presence of prohormone sequences in addition to the dibasic residues at cleavage sites for substrate recognition and/or binding.  相似文献   

7.
Abstract: Dopamine β-mdriooxygenase converts dopamine to norepinephrine in intact chromaffin granules using intragranular ascorbic acid as a cosubstrate. Mg-ATP with external ascorbic acid is required for maximal norepinephrine biosynthesis. Mechanisms to explain these requirements were investigated specifically using intact granules. The effect of Mg-ATP was independent of membrane potential (ΔΨ) because norepinephrine biosynthesis was unchanged whether ΔΨ was positive or collapsed. Furthermore, the effect of Mg-ATP was independent of absolute intragranular and extragranular pH as well as the pH difference across the chromaffin granule membrane (ΔpH). Nevertheless, norepinephrine biosynthesis was inhibited by N -ethylmaleimide, 4-chloro-7-nitrobenzofurazane, and N , N -dicyclohexylcarbodiimide, specific inhibitors of the secretory vesicle ATPase that may directly affect proton pumping. Biosynthesis occurred normally with other ATPase inhibitors that do not inhibit the ATPase in secretory vesicles. The data indicate that the effect of Mg-ATP with ascorbic acid is mediated by the granule membrane ATPase but independent of maintaining ΔΨ and ApH. An explanation of these findings is that Mg-ATP, via the granule ATPase, may change the rate at which protons or dopamine are made available to dopamine β-monooxygenase.  相似文献   

8.
The effect of cyclic AMP on calcium movements in the pancreatic beta-cell was evaluated using an experimental approach based on in situ labelling of intracellular organelles of ob/ob-mouse islets with 45Ca. Whereas the glucose-stimulated 14Ca incorporation by mitochondria and secretory granules was increased under a condition known to reduce cyclic AMP (starvation), raised levels of this nucleotide (addition of 3-isobutyl-1-methylxanthine or N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate) reduced the mitochondrial accumulation of 45Ca. Conditions with increased cyclic AMP were associated with a stimulated efflux of 45Ca from the secretory granules but not from the mitochondria. The microsomal fraction differed from both the mitochondrial and secretory granule fractions by accumulating more 45Ca after the addition of 3-isobutyl-1-methylxanthine. The results suggest that cyclic AMP potentiates glucose-stimulaated insulin release by increasing cytoplasmic Ca2+ at the expense of the calcium taken up by the organelles of the pancreatic beta-cells.  相似文献   

9.
Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.  相似文献   

10.
This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.  相似文献   

11.
An osmotic mechanism for exocytosis from dissociated chromaffin cells   总被引:7,自引:0,他引:7  
Dissociated chromaffin cells from bovine adrenal medulla were stimulated to secrete epinephrine and dopamine beta-hydroxylase with a variety of secretagogues in a study designed to test the hypothesis that the chemiosmotic lysis reaction of isolated chromaffin granules might in some way be related to the mechanism of release during exocytosis. Increasing the osmotic strength of the incubation medium with either NaCl or sucrose led to suppression of secretion of epinephrine from the cells regardless of whether secretion was induced with veratridine or acetylcholine. Suppression of secretion was approximately exponential with respect to osmotic strength. Epinephrine secretion occurred only if the medium contained a permeant anion such as chloride, and secretion induced by veratridine was suppressed when Na isethionate replaced NaCl in the medium. In an extensive study with different monovalent anions veratridine supported epinephrine secretion according to the following activity series: Br-, I-, NO3- greater than methylsulfate, SCN- greater than Cl greater than acetate much greater than isethionate. A similar series, except for the potency of NO3-, was observed with A23187 as agonist. In general, the anion series for granule lysis was analogous. However, there was a poor quantitative correlation between the anion dependence of chemiosmotic granule lysis and the anion dependence of cell secretion. Anion transport inhibitors such as probenecid and pyridoxal phosphate also inhibited secretion while the stilbene disulfonates were inactive. The ineffectiveness of the stilbene disulfonates further distinguished chemiosmotic granule lysis from cell secretion. Secretion of catecholamines, induced by veratridine or nicotine, a cholinergic agonist, was suppressed when NaCl in the medium was replaced by isosmotic sucrose and unexpectedly low levels of dopamine beta-hydroxylase were observed in some cases. In sum, these properties of secreting chromaffin cells resembled some properties of isolated chromaffin granules incubated in ATP and Cl-, but were different in a number of instances. We, therefore, have interpreted our data to indicate that while some mechanistic relationships may indeed exist between the release event in exocytosis from chromaffin cells and the chemiosmotic lysis reaction characteristic of isolated chromaffin granules, an understanding of the energetics of exocytosis awaits the discovery of reasons for the quantitative differences between the two systems.  相似文献   

12.
The incorporation of 32P from [gamma-32P]ATP into intracellular proteins was studied in electrically permeabilized rat islets of Langerhans. Ca2+ (10 microM), cyclic AMP (100 microM) and a protein kinase C-activating phorbol ester, phorbol 13-myristate 12-acetate (PMA; 100 nM) produced marked changes in the phosphorylation state of a number of proteins in permeabilized islets after incubation for 1 min at 37 degrees C. Ca2+ modified the effects of cyclic AMP and PMA on protein phosphorylation. Noradrenaline (10 microM) had no detectable effects on Ca2+-dependent protein phosphorylation, but significantly inhibited Ca2+-induced insulin secretion from electrically permeabilized islets. These results suggest that electrically permeabilized islets offer a useful model in which to study rapid events in protein phosphorylation as a mechanism of stimulus-secretion coupling. If the rapid Ca2+-induced effects on protein phosphorylation are involved in the control of insulin secretion, the results of this study also imply that part of the catecholamine inhibition of insulin secretion occurs at a stage in the secretory pathway beyond the activation of the regulated protein kinases.  相似文献   

13.
When isolated chromaffin granules were aggregated by synexin (a Ca2+-binding protein present in chromaffin and other secretory tissues) and then exposed to cis-unsaturated fatty acids at 37 degrees C, they fused together to form large vesicles. The fusion was monitored by phase and electron microscopy and by turbidity measurements on the granule suspension. Arachidonic acid was the most effective fusogen, whereas trans-unsaturated fatty acids, saturated fatty acids, detergents or lysolecithin were inactive. During fusion some of the epinephrine of the granules was released but the soluble core proteins remained trapped in the resulting vesicles. These vesicles swelled to enclose the maximum volume. Although this swelling could be inhibited by increasing the osmotic strength of the medium, it did not appear to depend on the chemiosmotic properties of the granule membranes as it was not influenced by ATP, a proton ionophore, or an anion transport inhibitor. The regulators of this in vitro fusion--Ca2+, synexin, and free, cis-unsaturated fatty acids--may be present in the cytoplasm of the chromaffin cell when it is stimulated to release epinephrine and granule proteins by exocytosis. Therefore, this fusion event may be the same that occurs between chromaffin granules undergoing compound exocytosis.  相似文献   

14.
Protein kinase C (PKC)-dependent phosphorylation of endogenous substrates was measured in electrically permeabilised rat islets of Langerhans. The PKC-activating phorbol ester, 4 beta-phorbol myristate acetate (PMA), caused a slow but prolonged increase in insulin secretion from permeabilised islets, which was accompanied by increased 32P incorporation into several islet proteins of apparent M.W. 30-50 kDa. Depletion of islet PKC by prolonged exposure to PMA abolished subsequent secretory and phosphorylating responses to the phorbol ester. However, PKC-depleted islets did not show diminished responses to glucose, suggesting that PKC-mediated phosphorylation of these proteins is not essential for nutrient-induced insulin secretion.  相似文献   

15.
Purified preparations of pancreatic zymogen granules have the peculiar property of lysing instantaneously at neutral pH, a property clearly irreconcilable with the cytoplasmic pH of the acinar cell. Two important factors known for regulating the stability of secretory granules are calcium and pH. Fluorescence microscopy of acinar cells in the presence of weak bases showed that zymogen granules have an acidic pH. In vivo, abolition of the delta pH by NH4Cl did not induce any lysis of the granules. In vitro, with purified granules, an acidic intragranular pH was measured. This delta pH was produced by a Donnan potential. The importance for granule stability of keeping the intragranular pH acidic has been confirmed in vitro by addition of K+ and nigericin to the suspension medium. These conditions produced alkalinization of the granule matrix and caused instantaneous solubilization of the granules. Concentrations of 15 mM total, and 10 mM free calcium were measured in purified granules. The importance of intragranular Ca2+ was evaluated by means of the ionophore A23187 which induced calcium efflux and granule lysis. The lysis induced by the calcium ionophore was in direct relation with the calcium efflux, since addition of Ca2+ to the medium, at concentrations corresponding to that measured in the granule, relieved the effect. The role of calcium-binding sites on the cytoplasmic surface of the granules was investigated with Ca2+, EGTA, and La3+. Calcium did not have any damaging effects; EGTA induced a slight lysis, while lanthanum yielded a strong and spontaneous lysis at micromolar concentrations. In addition to calcium-binding sites, La3+ would bind to specific sites on the granule that would be directly coupled to maintenance of its stability. These findings suggest that the intragranular acidic pH and calcium are both important for the in vitro stability of the zymogen granule and that purified granules have lost, in the course of purification, some cytoplasmic factors that in vivo, control the permeability of the membrane to protons, and chloride more particularly. Calcium-binding sites and other specific sites probed with La3+, presumably on proteins at the surface of the granule, are also believed to have key roles in preserving the integrity of the membrane and the resulting stability of the granule.  相似文献   

16.
In order to examine the role of osmotic forces in degranulation, the effects of solutes and osmolality on granule secretion were explored using both FMLP-stimulated, intact neutrophils and Ca2+-stimulated, permeabilized cells. We employed a HEPES-based buffer system which was supplemented with: a) permeant (KCl or NaCl) or impermeant (Na-isethionate or choline-Cl) ions, or b) permeant (urea) or impermeant (sucrose) uncharged solutes. Intact and permeabilized cells had significantly different solute requirements for degranulation. FMLP-stimulated release from intact cells was supported by NaCl or Na-isethionate greater than KCl greater than choline-Cl or sucrose greater than urea. In contrast, the rank order of Ca2+-stimulated release from permeabilized cells was choline-Cl greater than Na-isethionate, KCl, or NaCl greater than sucrose greater than urea. Hypo-osmotic conditions caused increased levels of background granule release from both intact and permeabilized neutrophils. However, hypo-osmolality inhibited both FMLP-stimulated degranulation from intact cells and Ca2+-induced release from permeabilized neutrophils. While hyperosmotic conditions inhibited stimulated release from intact cells, this inhibition was much less pronounced in permeabilized cells when the granules were directly exposed to these solutions. In fact, hyperosmotic sucrose greatly enhanced Ca2+-induced secretion. Although isolated specific and azurophil granules showed some lytic tendencies in hypo-osmotic buffers, the overall stability of the isolated granules did not indicate that swelling alone could effect degranulation. These results suggest that degranulation in permeabilized cells is neither due to nor driven by simple osmotic forces (under resting or stimulated conditions) and emphasize differences obtained by bathing both the granules and plasma membrane (as opposed to membranes alone) in various solutes.  相似文献   

17.
The metabolic and secretory effects of methylamine in rat pancreatic islets were investigated. Methylamine accumulated in islet cells, was incorporated into endogenous islet proteins, and inhibited the incorporation of [2,5-3H] histamine into either N,N-dimethylcasein or endogenous islet proteins. Methylamine (2 mM ) did not affect the oxidation of glucose or endogenous nutrients or the intracellular pH in islet cells. Glucose did not affect the activity of transglutaminase in islet homogenates, the uptake of 14C-methylamine by intact islets or its incorporation into endogenous islet proteins. Methylamine inhibited insulin release evoked by glucose, other nutrient secretagogues, and non-nutrient insulinotropic agents such as L -arginine or gliclazide. The inhibitory effect of methylamine upon insulin release was diminished in the presence of cytochalasin B or at low extracellular pH. Methylamine retarded the conversion of proinsulin to insulin. Trimethylamine (0.7 mM ) was more efficiently taken up by islet cells than methylamine (2.0 mM ), and yet caused only a modest inhibition of insulin release. These findings suggest that methylamine interferes with a late step in the secretory sequence, possibly by inhibiting the access of secretory granules to their exocytotic site.  相似文献   

18.
The present study aimed at comparing the effects of glucose on ionic and secretory events in freshly isolated and 5-7 day cultured rat pancreatic islets. The capacity of glucose to provoke insulin release was severely reduced in islets maintained in culture. Whether in freshly isolated or cultured islets, glucose provoked a marked and sustained decrease in 45Ca2+ outflow from islets deprived of extracellular Ca2+. In the presence of extracellular Ca2+ throughout, the magnitude of the glucose-induced secondary rise in 45Ca2+ outflow was reduced in cultured islets. Glucose provoked a weaker increase in [Ca2+]i in islet cells obtained from cultured islets than in islet cells dissociated from freshly isolated pancreatic islets. On the other hand, the stimulatory effect of carbamylcholine on 45Ca2+ outflow was unaffected by tissue culture. Lastly, in islet cells obtained from cultured islets, the increase in [Ca2+]i evoked by K+ depolarization averaged half of that observed in control experiments. These results indicate that the reduced secretory potential of glucose in cultured pancreatic islets can be ascribed to the inability of the nutrient secretagogue to provoke a suitable increase in Ca2+ influx.  相似文献   

19.
Chromaffin granules, the catecholaminergic storage granules from adrenal chromaffin cells, lysed in 10(-9)-10(-7) M Fe2+. Lysis was accompanied by the production of malondialdehyde which results from lipid peroxidation. Both chromaffin granule lysis and malondialdehyde production were inhibited by the free radical trapping agent butylated hydroxytoluene but not by catalase and/or superoxide dismutase. The results suggest that lysis resulted from a direct transfer of electrons from Fe2+ to a component of the chromaffin granule membrane without the participation of either superoxide or hydrogen peroxide and may have resulted from lipid peroxidation. In some experiments, ascorbate alone induced chromaffin granule lysis which was inhibited by EDTA, EGTA, or deferoxamine. The lysis was probably caused by trace amounts of reducible polyvalent cation. Lysis sometimes occurred when Ca2+ was added with EGTA (10 microM free Ca2+ concentration) and was consistently observed together with malondialdehyde production in the presence of Ca2+, EGTA, and 10 microM Fe2+ (total concentration). The apparent Ca2+ dependency for chromaffin granule lysis and malondialdehyde production was probably caused by a trace reducible polyvalent ion displaced by Ca2+ from EGTA and not by a Ca2+-dependent reaction involving the chromaffin granule.  相似文献   

20.
The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and [14C]methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca2+ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号