首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Davis WB  Bjorklund CC  Deline M 《Biochemistry》2012,51(14):3129-3142
The ability of DNA to transport positive charges, or holes, over long distances is well-established, but the mechanistic details of how this process is influenced by packaging into DNA-protein complexes have not been fully delineated. In eukaryotes, genomic DNA is packaged into chromatin through its association with the core histone octamer to form the nucleosome core particle (NCP), a complex whose structure can be modulated through changes in the local environment and the histone proteins. Because (i) varying the salt concentration and removing the histone tails influence the structure of the NCP in known ways and (ii) previous studies have shown that DNA hole transport (HT) occurs in the nucleosome, we have used our previously described 601 sequence NCPs to test the hypothesis that DNA HT dynamics can be modulated by structural changes in a DNA-protein complex. We show that at low salt concentrations there is a sharp increase in long-range DNA HT efficiency in the NCP as compared to naked DNA. This enhancement of HT can be negated by either removal of the histone tails at low salt concentrations or disruption of the interaction of the packaged DNA and the histone tails by increasing the buffer's ionic strength. Association of the histone tails with 601 DNA at low salt concentrations shifts the guanine damage spectrum to favor lesions like 8-oxoguanine in the NCP, most likely through modulation of the rate of the reaction of the guanine radical cation with oxygen. These experimental results indicate that for most genomic DNA, the influence of DNA-protein interactions on DNA HT will depend strongly on the level of protection of the DNA nucleobases from oxygen. Further, these results suggest that the oxidative damage arising from DNA HT may vary in different genomic regions depending on the presence of either euchromatin or heterochromatin.  相似文献   

3.
4.
We studied the diffusion of native and trypsinized nucleosome core particles (NCPs), in aqueous solution and in concentrated DNA solutions (0.25-100 mg/ml) using fluorescence correlation spectroscopy (FCS). The highest DNA concentrations studied mimic the DNA density inside the cell nucleus. The diffusion coefficient of freely diffusing NCPs depends on the presence or absence of histone tails and is affected by the salt concentration due to the relaxation effect of counterions. NCPs placed in a network of long DNA molecules (30-50 kbp) reveal anomalous diffusion. We demonstrate that NCPs diffusion is in agreement with known particle transport in entangled macromolecular solutions as long as the histone tails are folded onto the particles. In contrast, when these tails are unfolded, the reversible adsorption of NCPs onto the DNA network has to be taken into account. This is confirmed by the fact that removal of the tails leads to reduction of the interaction between NCPs and the DNA network. The findings suggest that histone tail bridging plays an important role in chromatin dynamics.  相似文献   

5.
The nucleosome core particle (NCP) is the fundamental building block of chromatin which compacts ~146 bp of DNA around a core histone protein octamer. The effects of NCP packaging on long-range DNA charge transport reactions have not been adequately assessed to date. Here we study DNA hole transport reactions in a 157 bp DNA duplex (AQ-157TG) incorporating multiple repeats of the DNA TG-motif, a strong NCP positioning sequence and a covalently attached Anthraquinone photooxidant. Following a thorough biophysical characterization of the structure of AQ-157TG NCPs by Exonuclease III and hydroxyl radical footprinting, we compared the dynamics of DNA charge transport in ultraviolet-irradiated free and NCP-incorporated AQ-157TG. Compaction into a NCP changes the charge transport dynamics in AQ-157TG drastically. Not only is the overall yield of oxidative lesions decreased in the NCPs, but the preferred sites of oxidative damage change as well. This NCP-dependent attenuation of DNA charge transport is attributed to DNA–protein interactions involving the folded histone core since removal of the histone tails did not perturb the charge transport dynamics in AQ-157TG NCPs.  相似文献   

6.
Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration Cs. The maximal extension (Dmax) of the NCP (145 ± 3-bp DNA) increases from 137 ± 5 Å to 165 ± 5 Å when Cs rises from 10 to 50 mM and remains constant with further increases of Cs up to 200 mM. In view of the very weak increase of the Rg value in the same Cs range, we attribute this Dmax variation to tail extension, a proposal confirmed by simulations of the entire I(q) curves, considering an ideal solution of particles with tails either condensed or extended. This tail extension is observed at higher salt values when particles contain longer DNA fragments (165 ± 10 bp). The maximal extension of the tails always coincides with the screening of repulsive interactions between particles. The second virial coefficient becomes smaller than the hard sphere virial coefficient and eventually becomes negative (net attractive interactions) for NCP145. Addition of salt simultaneously screens Coulombic repulsive interactions between NCP and Coulombic attractive interactions between tails and DNA inside the NCP. We discuss how the coupling of these two phenomena may be of biological relevance.  相似文献   

7.
Using small-angle x-ray scattering, we probe the effect of histone tails on both internucleosomal interactions and nucleosome conformation. To get insight into the specific role of H3 and H4 histone tails, perfectly monodisperse recombinant nucleosome core particles were reconstituted, either intact or deprived of both H3 and H4 histone tails (gH3gH4). The main result is that H3 and H4 histone tails are necessary to induce attractive interactions between NCPs. A pair potential model was used to describe interactions between NCPs. At all salt concentrations, interactions between gH3gH4 NCPs are best described by repulsive interactions exclusively. For intact NCPs, an additional attractive term, with a 5–10 kT magnitude and 20 Å range, is required to account for interparticle interactions above 50 mM monovalent salt. Regarding conformation, intact NCPs in solution are similar to NCPs in 3D crystals. gH3gH4 NCPs instead give rise to slightly different small-angle x-ray scattering curves that can be understood as a more opened conformation of the particle, where DNA ends are slightly detached from the core.  相似文献   

8.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

9.
Gene regulation programs establish cellular identity and rely on dynamic changes in the structural packaging of genomic DNA. The DNA is packaged in chromatin, which is formed from arrays of nucleosomes displaying different degree of compaction and different lengths of inter-nucleosomal linker DNA. The nucleosome represents the repetitive unit of chromatin and is formed by wrapping 145–147 basepairs of DNA around an octamer of histone proteins. Each of the four histones is present twice and has a structured core and intrinsically disordered terminal tails. Chromatin dynamics are triggered by inter- and intra-nucleosome motions that are controlled by the DNA sequence, the interactions between the histone core and the DNA, and the conformations, positions, and DNA interactions of the histone tails. Understanding chromatin dynamics requires studying all these features at the highest possible resolution. For this, molecular dynamics simulations can be used as a powerful complement or alternative to experimental approaches, from which it is often very challenging to characterize the structural features and atomic interactions controlling nucleosome motions. Molecular dynamics simulations can be performed at different resolutions, by coarse graining the molecular system with varying levels of details. Here we review the successes and the remaining challenges of the application of atomic resolution simulations to study the structure and dynamics of nucleosomes and their complexes with interacting partners.  相似文献   

10.
Multiscale modeling of nucleosome dynamics   总被引:3,自引:1,他引:2       下载免费PDF全文
Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed “cold sites”, which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin structure, mediated by salt-bridge interactions with adjacent DNA.  相似文献   

11.
All-atom molecular dynamics (MD) simulations were performed during 30-45 ns for a system of three identical DNA 22-mers, 14 short fragments of the charged H4 histone tail peptide fragment (amino acids 5-12, KGGKGLGK) with K(+) counterions, and explicit water. The simulation setup mimics the crowded conditions of DNA in eukaryotic chromatin. To assess the influence of tail fragments on DNA structure and dynamics, a "control" 20 ns MD simulation was carried for a system with the same DNA and water content but in the absence of oligopeptides. Results of DNA interaction with the histone tail fragments, K(+), and water is presented. DNA structure and dynamics and its interplay with the histone tail fragments binding are described. The charged side chains of the lysines play a major role in mediating DNA-DNA attraction by forming bridges and coordinating to phosphate groups and electronegative sites in the minor groove. Binding of all species to DNA is dynamic. Some of the tail fragments while being flexible and mobile in each of its functional groups remain associated near certain locations of the DNA oligomer. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction, and dynamics.  相似文献   

12.
13.
The structural unit of eukaryotic chromatin is a nucleosome, comprising two histone H2A/H2B heterodimers and one histone (H3/H4)2 tetramer, wrapped around by ∼146-bp core DNA and linker DNA. Flexible histone tails sticking out from the core undergo posttranslational modifications that are responsible for various epigenetic functions. Recently, the functional dynamics of histone tails and their modulation within the nucleosome and nucleosomal complexes have been investigated by integrating NMR, molecular dynamics simulations, and cryo-electron microscopy approaches. In particular, recent NMR studies have revealed correlations in the structures of histone N-terminal tails between H2A and H2B, as well as between H3 and H4 depending on linker DNA, suggesting that histone tail networks exist even within the nucleosome.  相似文献   

14.
15.
The core histone tail domains play important roles in different stages of chromatin condensation. The tails are required for folding nucleosome arrays into secondary chromatin structures such as the approximately 30 nm diameter chromatin fiber and for mediating fiber-fiber interactions important for formation of tertiary chromatin structures. Crosslinking studies have demonstrated that inter-nucleosomal tail-DNA contacts appear in conjunction with salt-induced folding of nucleosome arrays into in higher order chromatin structures. However, since both folding of nucleosome arrays and fiber-fiber interactions take place simultaneously in >2-3 mM MgCl(2) such inter-nucleosome interactions may reflect short range (intra-array) or longer range (inter-array) interactions. Here, we describe a novel technique to specifically identify inter-array interactions mediated by the histone tail domains. In addition, we describe a new method for the preparation of H3/H4 tetramers.  相似文献   

16.
The nucleosome complex of DNA wrapped around a histone protein octamer organizes the genome of eukaryotes and regulates the access of protein factors to the DNA. We performed molecular dynamics simulations of the nucleosome in explicit water to study the dynamics of its histone-DNA interactions. A high-resolution histone-DNA interaction map was derived that revealed a five-nucleotide periodicity, in which the two DNA strands of the double helix made alternating contacts. On the 100-ns timescale, the histone tails mostly maintained their initial positions relative to the DNA, and the spontaneous unwrapping of DNA was limited to 1–2 basepairs. In steered molecular dynamics simulations, external forces were applied to the linker DNA to investigate the unwrapping pathway of the nucleosomal DNA. In comparison with a nucleosome without the unstructured N-terminal histone tails, the following findings were obtained: 1), Two main barriers during unwrapping were identified at DNA position ±70 and ±45 basepairs relative to the central DNA basepair at the dyad axis. 2), DNA interactions of the histone H3 N-terminus and the histone H2A C-terminus opposed the initiation of unwrapping. 3), The N-terminal tails of H2A, H2B, and H4 counteracted the unwrapping process at later stages and were essential determinants of nucleosome dynamics. Our detailed analysis of DNA-histone interactions revealed molecular mechanisms for modulating access to nucleosomal DNA via conformational rearrangements of its structure.  相似文献   

17.
We have captured the binding of a peptide to a PDZ domain by unbiased molecular dynamics simulations. Analysis of the trajectories reveals on-pathway encounter complex formation, which is driven by electrostatic interactions between negatively charged carboxylate groups in the peptide and positively charged side chains surrounding the binding site. In contrast, the final stereospecific complex, which matches the crystal structure, features completely different interactions, namely the burial of the hydrophobic side chain of the peptide C-terminal residue and backbone hydrogen bonds. The simulations show that nonnative salt bridges stabilize kinetically the encounter complex during binding. Unbinding follows the inverse sequence of events with the same nonnative salt bridges in the encounter complex. Thus, in contrast to protein folding, which is driven by native interactions, the binding of charged peptides can be steered by nonnative interactions, which might be a general mechanism, e.g., in the recognition of histone tails by bromodomains.  相似文献   

18.
Comparative explicit solvent molecular dynamics (MD) simulations have been performed on a complete nucleosome core particle with and without N-terminal histone tails for more than 20 ns. Main purpose of the simulations was to study the dynamics of mobile elements such as histone N-terminal tails and how packing and DNA-bending influences the fine structure and dynamics of DNA. Except for the tails, histone and DNA molecules stayed on average close to the crystallographic start structure supporting the quality of the current force field approach. Despite the packing strain, no increase of transitions to noncanonical nucleic acid backbone conformations compared to regular B-DNA was observed. The pattern of kinks and bends along the DNA remained close to the experiment overall. In addition to the local dynamics, the simulations allowed the analysis of the superhelical mobility indicating a limited relative mobility of DNA segments separated by one superhelical turn (mean relative displacement of approximately +/-0.2 nm, mainly along the superhelical axis). An even higher rigidity was found for relative motions (distance fluctuations) of segments separated by half a superhelical turn (approximately +/-0.1 nm). The N-terminal tails underwent dramatic conformational rearrangements on the nanosecond time scale toward partially and transiently wrapped states around the DNA. Many of the histone tail changes corresponded to coupled association and folding events from fully solvent-exposed states toward complexes with the major and minor grooves of DNA. The simulations indicate that the rapid conformational changes of the tails can modulate the DNA accessibility within a few nanoseconds.  相似文献   

19.
We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.  相似文献   

20.
Genomic DNA is packaged in chromatin, a dynamic fiber variable in size and compaction. In chromatin, repeating nucleosome units wrap 145–147 DNA basepairs around histone proteins. Genetic and epigenetic regulation of genes relies on structural transitions in chromatin which are driven by intra- and inter-nucleosome dynamics and modulated by chemical modifications of the unstructured terminal tails of histones. Here we demonstrate how the interplay between histone H3 and H2A tails control ample nucleosome breathing motions. We monitored large openings of two genomic nucleosomes, and only moderate breathing of an engineered nucleosome in atomistic molecular simulations amounting to 24 μs. Transitions between open and closed nucleosome conformations were mediated by the displacement and changes in compaction of the two histone tails. These motions involved changes in the DNA interaction profiles of clusters of epigenetic regulatory aminoacids in the tails. Removing the histone tails resulted in a large increase of the amplitude of nucleosome breathing but did not change the sequence dependent pattern of the motions. Histone tail modulated nucleosome breathing is a key mechanism of chromatin dynamics with important implications for epigenetic regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号