首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the agitation conditions on the growth, morphology, vacuolation, and productivity of Penicillium chrysogenum has been examined in 6 L fed-batch fermentations. A standard Rushton turbine, a four-bladed paddle, and a six-bladed pitched blade impeller were compared. Power inputs per unit volume of liquid, P/VL, ranged from 0.35 to 7.4 kW/m3. The same fermentation protocol was used in each fermentation, including holding the dissolved oxygen concentration above 40% air saturation by gas blending. The mean projected area (for all dispersed types, including clumps) and the clump roughness were used to characterize the morphology. Consideration of clumps was vital as these were the predominant morphological form. For a given impeller, the batch-phase specific growth rates and the overall biomass concentrations increased with agitation intensity. Higher fragmentation at higher speeds was assumed to have promoted growth through increased formation of new growing tips. The mean projected area increased during the rapid growth phase followed by a sharp decrease to a relatively constant value dependent on the agitation conditions. The higher the speed, the lower the projected area for a given impeller type. The proportion by volume of hyphal vacuoles and empty regions decreased with speed, possibly due to fragmentation in the vacuolated regions. The specific penicillin production rate was generally higher with lower impeller speed for a given impeller type. The highest value of penicillin production as well as its rate was obtained using the Rushton turbine impeller at the lowest speed. At given P/VL, changes in morphology, specific growth rate, and specific penicillin production rate depended on impeller geometry. The morphological data could be correlated with either tip speed or the "energy dissipation/circulation function," but a reasonable correlation of the specific growth rate and specific production rate was only possible with the latter. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

2.
ABSTRACT: BACKGROUND: Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. METHODS: R. toruloides was grown in batch and fed-batch cultures in 0.5 l bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. RESULTS: R. toruloides was grown on glucose, xylose, arabinose or mixtures of these carbohydrates in batch and fed-batch, nitrogen restricted conditions. Lipid production was most efficient with glucose (up to 25 g lipid L1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L1h1) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L1, with 49% lipid in the biomass) and fed-batch (35 to 47 g L1, with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. CONCLUSIONS: Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid production were achieved in both batch and fed-batch cultures with glucose as carbon source, for lipid production from mixtures of carbohydrates fed-batch cultivation was preferable. Constant feeding was better than intermittent feeding. The feeding strategy did not affect the relative proportion of different fatty acids in the lipid, but the presence of C5 sugars did.  相似文献   

3.
The influence of glucose oscillations on cell growth and product formation of a recombinant Escherichia coli culture producing a heterologous alpha-glucosidase was studied in fed-batch cultures in a laboratory bioreactor. Glucose oscillations were created by an on/off-feeding mode in either fast cycles (1 min) or slow cycles (4 min) and compared to a process with constant glucose addition. The study indicates that glucose oscillations influence the product stability and the overgrowth of plasmid-free cells if such cultures are not performed under continuous pressure for selection of plasmid-containing cells. Although the glucose uptake capacity decreased after induction of the recombinant alpha-glucosidase in all cultures performed, the up-growth of plasmid-free cells during the production phase was strongly inhibited by fast oscillations. In contrast, plasmid-free cells grew up when constant feeding or slow cycles were applied. Our data suggest that the various feed protocols effect the specific carbon dioxide formation rate differently, with the highest production of carbon dioxide in the cultivations with fast cycles. In connection to product formation the initial alpha-glucosidase accumulation was the same in all cultures, but the stability of the product was significantly lower in the cultivation with slow cycles. Our results from laboratory experiments are discussed in relation to the mixing situation in large-scale bioreactors.  相似文献   

4.
Recombinant Escherichia coli engineered to contain the whole mevalonate pathway and foreign genes for β-carotene biosynthesis, was utilized for production of β-carotene in bioreactor cultures. Optimum culture conditions were established in batch and pH-stat fed-batch cultures to determine the optimal feeding strategy thereby improving production yield. The specific growth rate and volumetric productivity in batch cultures at 37°C were 1.7-fold and 2-fold higher, respectively, than those at 28°C. Glycerol was superior to glucose as a carbon source. Maximum β-carotene production (titer of 663 mg/L and overall volumetric productivity of 24.6 mg/L × h) resulted from the simultaneous addition of 500 g/L glycerol and 50 g/L yeast extract in pH-stat fed-batch culture.  相似文献   

5.
We previously reported that, although agitation conditions strongly affected mycelial morphology, such changes did not lead to different levels of recombinant protein production in chemostat cultures of Aspergillus oryzae (Amanullah et al., 1999). To extend this finding to another set of operating conditions, fed-batch fermentations of A. oryzae were conducted at biomass concentrations up to 34 g dry cell weight/L and three agitation speeds (525, 675, and 825 rpm) to give specific power inputs between 1 and 5 kWm(-3). Gas blending was used to control the dissolved oxygen level at 50% of air saturation except at the lowest speed where it fell below 40% after 60-65 h. The effects of agitation intensity on growth, mycelial morphology, hyphal tip activity, and recombinant protein (amyloglucosidase) production in fed-batch cultures were investigated. In the batch phase of the fermentations, biomass concentration, and AMG secretion increased with increasing agitation intensity. If in a run, dissolved oxygen fell below approximately 40% because of inadequate oxygen transfer associated with enhanced viscosity, AMG production ceased. As with the chemostat cultures, even though mycelial morphology was significantly affected by changes in agitation intensity, enzyme titers (AGU/L) under conditions of substrate limited growth and controlled dissolved oxygen of >50% did not follow these changes. Although the measurement of active tips within mycelial clumps was not considered, a dependency of the specific AMG productivity (AGU/g biomass/h) on the percentage of extending tips was found, suggesting that protein secretion may be a bottle-neck in this strain during fed-batch fermentations.  相似文献   

6.
Presented is a novel antibody production platform based on the fed-batch culture of recombinant, NS0-derived cell lines. A standardized fed-batch cell culture process was developed for five non-GS NS0 cell lines using enriched and optimized protein-free, cholesterol-free, and chemically defined basal and feed media. The process performed reproducibly and scaled faithfully from the 2-L to the 100-L bioreactor scale achieving a volumetric productivity of > 120 mg/L per day. Fed-batch cultures for all five cell lines exhibited significant lactate consumption when the cells entered the stationary or death phase. Peak and final lactate concentrations were low relative to a previously developed fed-batch process (FBP). Such low lactate production and high lactate consumption rates were unanticipated considering the fed-batch culture basal medium has an unconventionally high initial glucose concentration of 15 g/L, and an overall glucose consumption in excess of 17 g/L. The potential of this process platform was further demonstrated through additional media optimization, which has resulted in a final antibody concentration of 2.64 +/- 0.19 g/L and volumetric productivity of > 200 mg/L per day in a 13-day FBP for one of the five production cell lines. Use of this standardized protein-free, cholesterol-free NS0 FBP platform enables consistency in development time and cost effectiveness for manufacturing of therapeutic antibodies.  相似文献   

7.
Most large-scale production processes in biotechnology are performed in fed-batch operational mode. In contrast, the screenings for microbial production strains are run in batch mode, which results in the microorganisms being subjected to different physiological conditions. This significantly affects strain selection. To demonstrate differences in ranking during strain selection depending on the operational mode, screenings were performed in batch and fed-batch modes. Two model populations of the methylotrophic yeast Hansenula polymorpha RB11 with vector pC10-FMD (PFMD-GFP) (220 clones) and vector pC10-MOX (PMOX-GFP) (224 clones) were applied. For fed-batch cultivations in deep-well microtiter plates, a controlled-release system made of silicone elastomer discs containing glucose was used. Three experimental set-ups were investigated: batch cultivation with (1) glucose as a substrate, which catabolite represses product formation, and (2) glycerol as a carbon source, which is partially repressing, respectively, and (3) fed-batch cultivation with glucose as a limiting substrate using the controlled-release system. These three experimental set-ups showed significant variations in green fluorescent protein (GFP) yield. Interestingly, screenings in fed-batch mode with glucose as a substrate resulted in the selection of yeast strains different from those cultivated in batch mode with glycerol or glucose. Ultimately, fed-batch screening is considerably better than screening in batch mode for fed-batch production processes with glucose as a carbon source.  相似文献   

8.
It is well known that high-viscosity fermentation broth can lead to mixing and oxygen mass transfer limitations. The seemingly obvious solution for this problem is to increase agitation intensity. In some processes, this has been shown to damage mycelia, affect morphology, and decrease product expression. However, in other processes increased agitation shows no effect on productivity. While a number of studies discuss morphology and fragmentation at the laboratory and pilot scale, there are relatively few publications available for production-scale fungal fermentations. The goal of this study was to assess morphology and fragmentation behavior in large-scale, fed-batch, fungal fermentations used for the production of protein. To accomplish this, a recombinant strain of Aspergillus oryzae was grown in 80 m(3) fermentors at two different gassed, impeller power-levels (one 50% greater than the other). Impeller power is reported as energy dissipation/circulation function (EDCF) and was found to have average values of 29.3 +/- 1.0 and 22.0 +/- 0.3 kW m(-3) s(-1) at high and low power levels, respectively. In all batches, biomass concentration profiles were similar and specific growth rate was < 0.03 h(-1). Morphological data show hyphal fragmentation occurred by both shaving-off of external clump hyphae and breakage of free hyphae. The fragmentation rate constant (k(frag)), determined using a first-order model, was 5.90 and 5.80 h(-1) for high and low power batches, respectively. At the end of each batch, clumps accounted for only 25% of fungal biomass, most of which existed as small, sparsely branched, free hyphal elements. In all batches, fragmentation was found to dominate fungal growth and branching. We speculate that this behavior was due to slow growth of the culture during this fed-batch process.  相似文献   

9.
Growth and phycocyanin production in batch and fed-batch cultures of the microalga Galdieria sulphuraria 074G, which was grown heterotrophically in darkness on glucose, fructose, sucrose, and sugar beet molasses, was investigated. In batch cultures, specific growth rates and yields of biomass dry weight on the pure sugars were 1.08-1.15 day-1 and 0.48-0.50 g g-1, respectively. They were slightly higher when molasses was the carbon source. Cellular phycocyanin contents during the exponential growth phase were 3-4 mg g-1 in dry weight. G. sulphuraria was able to tolerate concentrations of glucose and fructose of up to 166 g L-1 (0.9 M) and an ammonium sulfate concentration of 22 g L-1 (0.17 M) without negative effects on the specific growth rate. When the total concentration of dissolved substances in the growth medium exceeded 1-2 M, growth was completely inhibited. In carbon-limited fed-batch cultures, biomass dry weight concentrations of 80-120 g L-1 were obtained while phycocyanin accumulated to concentrations between 250 and 400 mg L-1. These results demonstrate that G. sulphuraria is well suited for growth in heterotrophic cultures at very high cell densities, and that such cultures produce significant amounts of phycocyanin. Furthermore, the productivity of phycocyanin in the heterotrophic fed-batch cultures of G. sulphuraria was higher than is attained in outdoor cultures of Spirulina platensis, where phycocyanin is presently obtained.  相似文献   

10.
To improve the specific production rate of Rhizopus oryzae lipase (ROL) in Pichia pastoris, a protein that triggers the unfolded protein response in P. pastoris, the effect of sorbitol/methanol mixed substrates was tested in batch and fed-batch cultures. Remarkably, a different substrate consumption behaviour was observed depending on the host's phenotype (Mut(+) or Mut(s)) in batch cultures: when the methanol assimilation capacity is genetically reduced (Mut(s) phenotype), both substrates were consumed simultaneously, allowing not only a higher specific growth rate but also higher lipase levels (8.7-fold) compared to those obtained by cells growing on methanol as a sole carbon source in batch culture. This effect was not observed in Mut(+) phenotype, where the two substrates were consumed sequentially and the levels of heterologous product were only slightly higher (1.7-fold). A mixed substrate strategy was also applied to a Mut(s) fed-batch culture at a low methanol concentration set-point (0.5 gl(-1)). This resulted in a 2.2-fold increase in the heterologous protein level achieved, compared with the methanol-only feeding strategy. In addition, sorbitol co-feeding permitted the achievement of higher specific growth rates, and avoided the drastic decrease of the specific production rate observed after the start of the induction phase when methanol was used as sole carbon source This resulted in a significant increase in the overall bioprocess volumetric productivity (2.2-fold) and specific productivity (1.7-fold). Moreover, whereas increased ROL gene dosage in Mut(s) strains have been previously reported to be deleterious for P. pastoris cells growing on methanol, sorbitol co-feeding allowed for sustained cell growth and lipase production.  相似文献   

11.
Two CHO cell clones derived from the same parental CHOBC® cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures. Higher amino acid feeding did not always lead to higher mAb production. The two clones showed differences in cell physiology, metabolism and optimal medium-feed combinations. During the phase transitions of all cultures, cell metabolism showed a shift represented by lower specific consumption and production rates, except for the specific glucose consumption rate in cultures fed by Actifeed A/B. The BC-P clone fed by Actifeed A/B showed a threefold cell volume increase and an increase of the specific consumption rate of glucose in the stationary phase. Since feeding was based on glucose this resulted in accumulation of amino acids for this feed, while this did not occur for the poorer feed (EFA/B). The same feed also led to an increase of cell size for the BC-G clone, but to a lesser extent.  相似文献   

12.
A perfusion system is described for the production of a human monoclonal antibody in non-secreting murine myeloma (NS0) cells that was previously shown to be difficult to produce at high levels using fed-batch culture. The perfusion system was based on the use of a commercially available cell settler as the separation device to separate the cells from the culture. Separation efficiency of the cell settler was above 98%. Based on the growth and glucose consumption rates, fresh media was added to the culture and the turnover rate for the bioreactor was set at a maximum of 1.5 times the bioreactor volume per day. The perfusion process resulted in twice the maximum viable cell densities and up to three times the total protein production in a 53-day run period when compared to the fed-batch process. In addition, charge heterogeneity of the antibody as measured by ion exchange chromatography was lower for material purified from the perfusion runs compared to fed-batch. Perfusion mode of culture using a commercially available gravity settler is therefore a viable alternative to fed-batch mode for high-level production of this monoclonal antibody in NS0 cells.  相似文献   

13.
Nematode yield is a decisive factor for successful large-scale commercial production of entomopathogenic nematode. Various carbon sources were tested in in-vitro liquid culture to improve the yield of the entomopathogenic nematode Heterorhabditis bacteriophora. Canola oil was the optimal carbon source for nematode culture compared to carbohydrates when applied as a sole carbon source. However, when some of carbohydrates were applied together with canola oil, significant increases in nematode yield were observed. When 25 mg glucose ml(-1) was supplemented to 25 mg oil-based liquid culture medium ml(-1), the highest nematode yield, 3.62 x 10(5) infective juveniles, was achieved at 12 days, but nematode growth was suppressed at higher than 75 mg glucose ml(-1). A fed-batch culture process was introduced in nematode liquid culture consisting of two growth phases: bacteria and nematode. In the oil fed-batch culture, in which only glucose was initially added and oil was fed to the culture after the bacterial growth phase concurrent with nematode inoculation, nematode yield increased up to 4.25 x 10(5) infective juveniles ml(-1), while the batch culture resulted in 3.60 x 10(5) infective juveniles ml(-1). These results indicate that glucose is a superior carbon source for the bacteria, whereas canola oil is optimal for the nematode. The application of fed-batch culture provides significant enhancement of nematode yield in in-vitro liquid culture.  相似文献   

14.
Acetate accumulation under aerobic conditions is a common problem in Escherichia coli cultures, as it causes a reduction in both growth rate and recombinant protein productivity. In this study, the effect of replacing the glucose phosphotransferase transport system (PTS) with an alternate glucose transport activity on growth kinetics, acetate accumulation and production of two model recombinant proteins, was determined. Strain VH32 is a W3110 derivative with an inactive PTS. The promoter region of the chromosomal galactose permease gene galP of VH32 was replaced by the strong trc promoter. The resulting strain, VH32GalP+ acquired the capacity to utilize glucose as a carbon source. Strains W3110 and VH32GalP+ were transformed for the production of recombinant TrpLE-proinsulin accumulated as inclusion bodies (W3110-PI and VH32GalP+-PI) and for production of soluble intracellular green fluorescent protein (W3110-pV21 and VH32GalP+-pV21). W3110-pV21 and VH32GalP+-pV21 were grown in batch cultures. Maximum recombinant protein concentration, as determined from fluorescence, was almost four-fold higher in VH32GalP+-pV21, relative to W3110-pV21. Maximum acetate concentration reached 2.8 g/L for W3110-pV21 cultures, whereas a maximum of 0.39 g/L accumulated in VH32GalP+-pV21. W3110-PI and VH32GalP+-PI were grown in batch and fed-batch cultures. Compared to W3110-PI, the engineered strain maintained similar production and growth rate capabilities while reducing acetate accumulation. Specific glucose consumption rate was lower and product yield on glucose was higher in VH32GalP+-PI fed-batch cultures. Altogether, strains with the engineered glucose uptake system showed improved process performance parameters for recombinant protein production over the wild-type strain.  相似文献   

15.
Defined minimal media conditions were used to assess and subsequently enhance the production of subtilisin by genetically characterized Bacillus subtilis strains. Subtilisin production was initiated by the exhaustion or limitation of ammonium in batch and fed-batch cultures. Expression of the subtilisin gene (aprE) was monitored with a chromosomal aprE::lacZ gene fusion. The beta-galactosidase production driven by this fusion reflected subtilisin accumulation in the culture medium. Subtilisin gene expression was temporally extended in sporulation-deficient strains (spoIIG), relative to co-genic sporogenous strains, resulting in enhanced subtilisin production. Ammonium exhaustion not only triggered subtilisin production in asporogenous spoIIG mutants but also shifted carbon metabolism from acetate production to acetate uptake and resulted in the formation of multiple septa in a significant fraction of the cell population. Fed-batch culture techniques, employing the spoIIG strain, were investigated as a means to further extend subtilisin production. The constant provision of ammonium resulted in linear growth, with doubling times of 11 and 36 h in each of two independent experiments. At the lower growth rate, the responses elicited (subtilisin production, glucose metabolism, and morphological changes) during the feeding regime closely approximated the ammonium starvation response, while at the higher growth rate a partial starvation response was observed.  相似文献   

16.
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.  相似文献   

17.
In this study, eight commercially available, chemically defined Chinese hamster ovary (CHO) cell culture media from different vendors were evaluated in batch culture using an IgG-producing CHO DG44 cell line as a model. Medium adaptation revealed that the occurrence of even small aggregates might be a good indicator of cell growth performance in subsequent high cell density cultures. Batch experiments confirmed that the culture medium has a significant impact on bioprocess performance, but high amino acid concentrations alone were not sufficient to ensure superior cell growth and high antibody production. However, some key amino acids that were limiting in most media could be identified. Unbalanced glucose and amino acids led to high cell-specific lactate and ammonium production rates. In some media, persistently high glucose concentrations probably induced the suppression of respiration and oxidative phosphorylation, known as Crabtree effect, which resulted in high cell-specific glycolysis rates along with a continuous and high lactate production. In additional experiments, two of the eight basal media were supplemented with feeds from two different manufacturers in six combinations, in order to understand the combined impact of media and feeds on cell metabolism in a CHO fed-batch process. Cell growth, nutrient consumption and metabolite production rates, antibody production, and IgG quality were evaluated in detail. Concentrated feed supplements boosted cell concentrations almost threefold and antibody titers up to sevenfold. Depending on the fed-batch strategy, fourfold higher peak cell concentrations and eightfold increased IgG titers (up to 5.8 g/L) were achieved. The glycolytic flux was remarkably similar among the fed-batches; however, substantially different specific lactate production rates were observed in the different media and feed combinations. Further analysis revealed that in addition to the feed additives, the basal medium can make a considerable contribution to the ammonium metabolism of the cells. The glycosylation of the recombinant antibody was influenced by the selection of basal medium and feeds. Differences of up to 50 % in the monogalacto-fucosylated (G1F) and high mannose fraction of the IgG were observed.  相似文献   

18.
Productivity in many fungal fermentations is detrimentally affected by high broth viscosity and consequent reduced oxygen mass transfer capacity. The goal here was to determine whether pulsed feeding of limiting carbon in a fungal fermentation could lead to reduced viscosity and improved oxygen mass transfer. As a model, an industrially relevant recombinant strain of Aspergillus oryzae was grown in carbon-limited, fed-batch mode. Maltodextrin was used as a carbon source and was added either continuously or in 1.5-min pulses, 3.5 min apart. In both feeding modes the same total amount of carbon was added, and carbon feed rate was at sufficiently low levels to ensure cultures were always carbon-limited. Compared to continuous feeding, pulsed addition of substrate led to smaller fungal elements, which resulted in a significant reduction in broth viscosity. This in turn led to higher dissolved oxygen concentrations and increased oxygen uptake rates during pulsed feeding.  相似文献   

19.
Similarities and differences between cultures of free and immobilized Aspergillus niger were identified under various glucose concentrations. Growth and citric acid production rates were compared, and the macro-morphology and fine structure of the mycelia examined to determine which parameters were significant in the production of citric acid. With free cultures the diameter of pellets was inversely related to glucose concentration, while biomass levels were lower for immobilized cultures than the equivalent free cultures. Rates of citric acid production were higher with immobilized mycelium, especially at higher glucose levels. The morphology that characterized high citric acid productivity was that of swollen hyphal tips which were seen at concentrations over 100 kg/m3 glucose in both free and immobilized mycelium. Although there is a characteristic morphology associated with high productivity it does not account for the difference observed between free and immobilized mycelia. The increased glucose uptake and productivity was not due to an increased surface area either, since the immobilized system was slightly lower in total surface area than the equivalent free cultures. The major difference was in the mean diffusion path in the two systems.  相似文献   

20.
The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cultivation was studied as an alternative fermentation strategy for DHA production. Glucose and acetic acid were compared as carbon sources. For both substrates, the feed rate was adapted to the maximum specific consumption rate of C. cohnii. In glucose-grown cultures, this was done by maintaining a significant glucose concentration (between 5 and 20 g/L) throughout fermentation. In acetic acid-grown cultures, the medium feed was automatically controlled via the culture pH. A feed consisting of acetic acid (50% w/w) resulted in a higher overall volumetric productivity of DHA (r(DHA)) than a feed consisting of 50% (w/v) glucose (38 and 14 mg/L/h, respectively). The r(DHA) was further increased to 48 mg/L/h using a feed consisting of pure acetic acid. The latter fermentation strategy resulted in final concentrations of 109 g/L dry biomass, 61 g/L lipid, and 19 g/L DHA. These are the highest biomass, lipid, and DHA concentrations reported to date for a heterotrophic alga. Vigorous mixing was required to sustain aerobic conditions during high-cell-density cultivation. This was complicated by culture viscosity, which resulted from the production of viscous extracellular polysaccharides. These may present a problem for large-scale industrial production of DHA. Addition of a commercial polysaccharide-hydrolase preparation could decrease the viscosity of the culture and the required stirring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号