首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1(-/-) mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1(+/+) and Npc1(-/-) microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1(-/-) microglia is ~60% lower than in Npc1(+/+) microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1(-/-) and Npc1(+/+) neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1(-/-) microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease.  相似文献   

2.
The importance of Niemann-Pick C1 Like-1 (NPC1L1) protein in intestinal absorption of dietary sterols, including both cholesterol and phytosterols, is well documented. However, the exact mechanism by which NPC1L1 facilitates cholesterol transport remains controversial. This study administered 22-(N(-7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol) and [(3)H]cholesterol to Npc1l1(+/+) and Npc1l1(-/-) mice to determine whether NPC1L1 facilitates dietary sterol uptake by enterocytes and/or participates in intracellular sterol delivery to the endoplasmic reticulum (ER) for lipoprotein assembly before secretion into plasma circulation. Results showed that [(3)H]cholesterol absorption was reduced but not abolished in Npc1l1(-/-) mice compared with Npc1l1(+/+) mice. In the presence of Pluronic L-81 to block pre-chylomicron exit from the ER, significant amounts of [(3)H]cholesterol were found to be associated with lipid droplets in the intestinal mucosa of both Npc1l1(+/+) and Npc1l1(-/-) mice, and the intracellular [(3)H]cholesterol can be esterified to cholesteryl esters. These results provided evidence indicating that the main function of NPC1L1 is to promote cholesterol uptake from the intestinal lumen but that it is not necessary for intracellular cholesterol transport to the ER. Surprisingly, NBD-cholesterol was taken up by intestinal mucosa, esterified to NBD-cholesteryl esters, and transported to plasma circulation to similar extent between Npc1l1(+/+) and Npc1l1(-/-) mice. Ezetimibe treatment also had no impact on NBD-cholesterol absorption by Npc1l1(+/+) mice. Thus, NBD-cholesterol absorption proceeds through an NPC1L1-independent and ezetimibe-insensitive sterol absorption mechanism. Taken together, these results indicate that NBD-cholesterol can be used to trace the alternative cholesterol absorption pathway but is not suitable for tracking NPC1L1-mediated cholesterol absorption.  相似文献   

3.
Niemann-Pick type C disease (NPC) is a sphingolipid storage disorder characterized by progressive neurodegeneration that typically shows juvenile onset. Mutations in the Npc1 gene cause approximately 95% of NPC cases. NPC1 is a multipass transmembrane protein involved in lipid and cholesterol trafficking. Loss of function mutations in Npc1 lead to the accumulation of sphingolipids and cholesterol in late endosomes and lysosomes. In our study, we demonstrated that NPC1 deficiency results in increased basal autophagy in human fibroblasts and in mice. We further demonstrated that NPC1 deficiency activate basal autophagy through increased expression of Beclin-1, a highly conserved member of the class III PI3K complex that is critical for the formation of autophagosomes. In contrast, enhanced basal autophagy was not associated with activation of the Akt-mTORp70 S6K signaling pathway. Increased Beclin-1 levels and elevated autophagy were also observed in other sphingolipid storage diseases characterized by disrupted cholesterol and sphingolipid trafficking. We propose a model in which the disordered cholesterol trafficking that occurs in many sphingolipid storages diseases results in upregulation of Beclin-1 and enhanced levels of autophagy.  相似文献   

4.
《Autophagy》2013,9(5):487-489
Niemann-Pick type C disease (NPC) is a sphingolipid storage disorder characterized by progressive neurodegeneration that typically shows juvenile onset. Mutations in the Npc1 gene cause ~95% of NPC cases. NPC1 is a multipass transmembrane protein involved in lipid and cholesterol trafficking. Loss of function mutations in Npc1 lead to the accumulation of sphingolipids and cholesterol in late endosomes and lysosomes. In our study, we demonstrated that NPC1 deficiency results in increased basal autophagy in human fibroblasts and in mice. We further demonstrated that NPC1 deficiency activates basal autophagy through increased expression of Beclin-1, a highly conserved member of the class III PI3K complex that is critical for the formation of autophagosomes. In contrast, enhanced basal autophagy was not associated with activation of the Akt–mTOR–p70 S6K signaling pathway. Increased Beclin-1 levels and elevated autophagy were also observed in other sphingolipid storage diseases characterized by disrupted cholesterol and sphingolipid trafficking. We propose a model in which the disordered cholesterol trafficking that occurs in many sphingolipid storages diseases results in upregulation of Beclin-1 and enhanced levels of autophagy.

Addendum to:

Autophagy in Niemann-Pick Type C is Beclin-1 Dependent and Responsive to Lipid Trafficking Defects

C.D. Pacheco, R. Kunkle and A.P. Lieberman

Human Mol Genet 2007; 16:1495-503  相似文献   

5.
Niemann-Pick Type C (NPC) disease is an autosomal recessive disorder that results in accumulation of cholesterol and other lipids in late endosomes/lysosomes and leads to progressive neurodegeneration and premature death. The mechanism by which lipid accumulation causes neurodegeneration remains unclear. Inappropriate activation of microglia, the resident immune cells of the central nervous system, has been implicated in several neurodegenerative disorders including NPC disease. Immunohistochemical analysis demonstrates that NPC1 deficiency in mouse brains alters microglial morphology and increases the number of microglia. In primary cultures of microglia from Npc1−/− mice cholesterol is sequestered intracellularly, as occurs in other NPC-deficient cells. Activated microglia secrete potentially neurotoxic molecules such as tumor necrosis factor-α (TNFα). However, NPC1 deficiency in isolated microglia did not increase TNFα mRNA or TNFα secretion in vitro. In addition, qPCR analysis shows that expression of pro-inflammatory and oxidative stress genes is the same in Npc1+/+ and Npc1−/− microglia, whereas the mRNA encoding the anti-inflammatory cytokine, interleukin-10 in Npc1−/− microglia is ~ 60% lower than in Npc1+/+ microglia. The survival of cultured neurons was not impaired by NPC1 deficiency, nor was death of Npc1−/− and Npc1+/+ neurons in microglia-neuron co-cultures increased by NPC1 deficiency in microglia. However, a high concentration of Npc1−/− microglia appeared to promote neuron survival. Thus, although microglia exhibit an active morphology in NPC1-deficient brains, lack of NPC1 in microglia does not promote neuron death in vitro in microglia-neuron co-cultures, supporting the view that microglial NPC1 deficiency is not the primary cause of neuron death in NPC disease.  相似文献   

6.
Niemann-Pick C (NPC) disease is an inherited, progressive neurodegenerative disorder caused by mutations in the NPC1 or NPC2 gene that result in an accumulation of unesterified cholesterol in late endosomes/lysosomes (LE/L) and impaired export of cholesterol from LE/L to the endoplasmic reticulum (ER). Recent studies demonstrate that administration of cyclodextrin (CD) to Npc1(-/-) mice eliminates cholesterol sequestration in LE/L of many tissues, including the brain, delays neurodegeneration, and increases lifespan of the mice. We have now investigated cholesterol homeostasis in NPC1-deficient cells of the brain in response to CD. Primary cultures of neurons and glial cells from Npc1(-/-) mice were incubated for 24 h with 0.1 to 10 mm CD after which survival and cholesterol homeostasis were monitored. Although 10 mm CD was profoundly neurotoxic, and altered astrocyte morphology, 0.1 and 1 mm CD were not toxic but effectively mobilized stored cholesterol from the LE/L as indicated by filipin staining. However, 0.1 and 1 mm CD altered cholesterol homeostasis in opposite directions. The data suggest that 0.1 mm CD releases cholesterol trapped in LE/L of neurons and astrocytes and increases cholesterol availability at the ER, whereas 1 mm CD primarily extracts cholesterol from the plasma membrane and reduces ER cholesterol. These studies in Npc1(-/-) neurons and astrocytes establish a dose of CD (0.1 mm) that would likely be beneficial in NPC disease. The findings are timely because treatment of NPC disease patients with CD is currently being initiated.  相似文献   

7.
Niemann-Pick type C (NPC) disease is a fatal, neurodegenerative disorder caused in 95% of cases by loss of function of NPC1, a ubiquitous endosomal transmembrane protein. A biochemical hallmark of NPC deficiency is cholesterol accumulation in the endocytic pathway. Although cholesterol trafficking defects are observed in all cell types, neurons are the most vulnerable to NPC1 deficiency, suggesting a specialized function for NPC1 in neurons. We investigated the subcellular localization of NPC1 in neurons to gain insight into the mechanism of action of NPC1 in neuronal metabolism. We show that NPC1 is abundant in axons of sympathetic neurons and is present in recycling endosomes in presynaptic nerve terminals. NPC1 deficiency causes morphological and biochemical changes in the presynaptic nerve terminal. Synaptic vesicles from Npc1(-/-) mice have normal cholesterol content but altered protein composition. We propose that NPC1 plays a previously unrecognized role in the presynaptic nerve terminal and that NPC1 deficiency at this site might contribute to the progressive neurological impairment in NPC disease.  相似文献   

8.
Niemann-Pick type C1 (NPC1) disease is a fatal neurovisceral disease for which there are no FDA approved treatments, though cyclodextrin (HPβCD) slows disease progression in preclinical models and in an early phase clinical trial. Our goal was to evaluate the mechanism of action of a previously described combination-therapy, Triple Combination Formulation (TCF) – comprised of the histone deacetylase inhibitor (HDACi) vorinostat/HPβCD/PEG – shown to prolong survival in Npc1 mice. In these studies, TCF's benefit was attributed to enhanced vorinostat pharmacokinetics (PK). Here, we show that TCF reduced lipid storage, extended lifespan, and preserved neurological function in Npc1 mice. Unexpectedly, substitution of an inactive analog for vorinostat in TCF revealed similar efficacy. We demonstrate that the efficacy of TCF was attributable to enhanced HPβCD PK and independent of NPC1 protein expression. We conclude that although HDACi effectively reduce cholesterol storage in NPC1-deficient cells, HDACi are ineffective in vivo in Npc1 mice.  相似文献   

9.
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status.  相似文献   

10.
One characteristic of type C Niemann-Pick (NPC) disease is the substantial intracellular accumulation of unesterified cholesterol. The increased cholesterol content in NPC fibroblasts which are grown in the presence of low density lipoproteins (LDL) has been postulated to be due to a deficiency in cellular cholesterol esterification. We have examined several aspects of LDL metabolism in NPC fibroblasts. We observe that LDL binding, internalization, and lysosomal hydrolysis of LDL cholesteryl esters are normal in NPC cells. As reported by Pentchev et al. (Pentchev, P. G., Comly, M. E., Kruth, H. S., Vanier, M. T., Wenger, D. A., Patel, S., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 8247-8251), we find that LDL does not stimulate cholesterol esterification. However, we also show that LDL does not down-regulate cholesterol synthesis or LDL receptor activity as normal. In NPC cells, these processes are regulated normally by nonlipoprotein effectors, such as 25-hydroxycholesterol or mevalonate. Since NPC cells are not defective in lysosomal hydrolysis of LDL-derived cholesteryl esters, they must exhibit a different defect than Wolman's or cholesteryl ester storage diseases. We conclude that NPC cells are defective specifically in LDL-mediated regulation of cellular cholesterol metabolism. We suggest that the intracellular processing of LDL-derived cholesterol may be defective in NPC fibroblasts.  相似文献   

11.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 -/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 -/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 -/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.  相似文献   

12.
Phosphatidylethanolamine N-methyltransferase (PEMT) is a liver-specific enzyme that converts phosphatidylethanolamine to phosphatidylcholine (PC). Mice that lack PEMT have reduced plasma levels of PC and cholesterol in high density lipoproteins (HDL). We have investigated the mechanism responsible for this reduction with experiments designed to distinguish between a decreased formation of HDL particles by hepatocytes or an increased hepatic uptake of HDL lipids. Therefore, we analyzed lipid efflux to apoA-I and HDL lipid uptake using primary cultured hepatocytes isolated from Pemt(+/+) and Pemt(-/-) mice. Hepatic levels of the ATP-binding cassette transporter A1 are not significantly different between Pemt genotypes. Moreover, hepatocytes isolated from Pemt(-/-) mice released cholesterol and PC into the medium as efficiently as did hepatocytes from Pemt(+/+) mice. Immunoblotting of liver homogenates showed a 1.5-fold increase in the amount of the scavenger receptor, class B, type 1 (SR-BI) in Pemt(-/-) compared with Pemt(+/+) livers. In addition, there was a 1.5-fold increase in the SR-BI-interacting protein PDZK1. Lipid uptake experiments using radiolabeled HDL particles revealed a greater uptake of [(3)H]cholesteryl ethers and [(3)H]PC by hepatocytes derived from Pemt(-/-) compared with Pemt(+/+) mice. Furthermore, we observed an increased association of [(3)H]cholesteryl ethers in livers of Pemt(-/-) compared with Pemt(+/+) mice after tail vein injection of [(3)H]HDL. These results strongly suggest that PEMT is involved in the regulation of plasma HDL levels in mice, mainly via HDL lipid uptake by SR-BI.  相似文献   

13.
Niemann-Pick type C disease (NPC) is a hereditary neurovisceral atypical lipid storage disorder produced by mutations in the NPC1 and NPC2 genes. The disease is characterized by unesterified cholesterol accumulation in late endosomal/lysosomal compartments and oxidative stress. The most affected tissues are the cerebellum and the liver. The lysotropic drug U18666A (U18) has been widely used as a pharmacological model to induce the NPC phenotype in several cell culture lines. It has already been reported that there is an increase in copper content in hepatoma Hu7 cells treated with U18. We confirmed this result with another human hepatoma cell line, HepG2, treated with U18 and supplemented with copper in the media. However, in mouse hippocampal primary cultures treated under similar conditions, we did not find alterations in copper content. We previously reported increased copper content in the liver of Npc1 (-/-) mice compared to control animals. Here, we extended the analysis to the copper content in the cerebella, the plasma and the bile of NPC1 deficient mice. We did not observe a significant change in copper content in the cerebella, whereas we found increased copper content in the plasma and decreased copper levels in the bile of Npc1(-/-) mice. Finally, we also evaluated the plasma content of ceruloplasmin, and we found an increase in this primary copper-binding protein in Npc1 (-/-) mice. These results indicate cell-type dependence of copper accumulation in NPC disease and suggest that copper transport imbalance may be relevant to the liver pathology observed in NPC disease.  相似文献   

14.
Niemann–Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1−/− mice (Npc1nih) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70 days of age). Similar measurements were made in Npc2−/− mice at 70 days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1−/− mice and remained so at 70 days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1−/− mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1−/− mice starting as early as 28 days. Similar metabolic and histologic changes were evident in the lungs of the Npc2−/− mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.  相似文献   

15.
16.
17.
Niemann-Pick Disease Type C (NP-C) is a fatal neurodegenerative disease, which is biochemically distinguished by the lysosomal accumulation of exogenously derived cholesterol. Mutation of either the hNPC1 or hNPC2 gene is causative for NP-C. We report the identification of the yeast homologue of human NPC2, Saccharomyces cerevisiae Npc2p. We demonstrate that scNpc2p is evolutionarily related to the mammalian NPC2 family of proteins. We also show, through colocalization, subcellular fractionation, and secretion analyses, that yeast Npc2p is treated similarly to human NPC2 when expressed in mammalian cells. Importantly, we show that yeast Npc2p can efficiently revert the unesterified cholesterol and GM1 accumulation seen in hNPC2-/- patient fibroblasts demonstrating that it is a functional homologue of human NPC2. The present study reveals that the fundamental process of NPC2-mediated lipid transport has been maintained throughout evolution.  相似文献   

18.
The low density lipoprotein receptor-related protein-1 (LRP1) is known to serve as a chylomicron remnant receptor in the liver responsible for the binding and plasma clearance of apolipoprotein E-containing lipoproteins. Previous in vitro studies have provided evidence to suggest that LRP1 expression may also influence high density lipoprotein (HDL) metabolism. The current study showed that liver-specific LRP1 knock-out (hLrp1(-/-)) mice displayed lower fasting plasma HDL cholesterol levels when compared with hLrp1(+/+) mice. Lecithin:cholesterol acyl transferase and hepatic lipase activities in plasma of hLrp1(-/-) mice were comparable with those observed in hLrp1(+/+) mice, indicating that hepatic LRP1 inactivation does not influence plasma HDL remodeling. Plasma clearance of HDL particles and HDL-associated cholesteryl esters was also similar between hLrp1(+/+) and hLrp1(-/-) mice. In contrast, HDL secretion from primary hepatocytes isolated from hLrp1(-/-) mice was significantly reduced when compared with that observed with hLrp1(+/+) hepatocytes. Biotinylation of cell surface proteins revealed decreased surface localization of the ATP-binding cassette, subfamily A, member 1 (ABCA1) protein, but total cellular ABCA1 level was not changed in hLrp1(-/-) hepatocytes. Finally, hLrp1(-/-) hepatocytes displayed reduced binding capacity for extracellular cathepsin D, resulting in lower intracellular cathepsin D content and impairment of prosaposin activation, a process that is required for membrane translocation of ABCA1 to facilitate cholesterol efflux and HDL secretion. Taken together, these results documented that hepatic LRP1 participates in cellular activation of lysosomal enzymes and through this mechanism, indirectly modulates the production and plasma levels of HDL.  相似文献   

19.
Cholestatic hepatitis is frequently found in Niemann-Pick C (NPC) disease. We studied the influence of diet and the low density lipoprotein receptor (LDLR, Ldlr in mice, known to be the source of most of the stored cholesterol) on liver disease in the mouse model of NPC. Npc1-/- mice of both sexes, with or without the Ldlr knockout, were fed a 18% fat, 1% cholesterol ("high-fat") diet and were evaluated by chemical and histological methods. Bile acid transporters [multidrug resistance protein (Mrps) 1-5; Ntcp, Bsep, and OatP1, 2, and 4] were quantitated by real-time RT-PCR. Many mice died prematurely (within 6 wk) with hepatomegaly. Histopathology showed an increase in macrophage and hepatocyte lipids independent of Ldlr genotype. Non-zone-dependent diffuse fibrosis was found in the surviving mice. Serum alanine aminotransferase was elevated in Npc1-/- mice on the regular diet and frequently became markedly elevated with the high-fat diet. Serum cholesterol was increased in the controls but not the Npc1-/- mice on the high-fat diet; it was massively increased in the Ldlr-/- mice. Esterified cholesterol was greatly increased by the high-fat diet, independent of Ldlr genotype. gamma-Glutamyltransferase was also elevated in Npc1-/- mice, more so on the high-fat diet. Mrps 1-5 were elevated in Npc1-/- liver and became more elevated with the high-fat diet; Ntcp, Bsep, and OatP2 were elevated in Npc1-/- liver and were suppressed by the high-fat diet. In conclusion, Npc1-/- mice on a high-fat diet provide an animal model of NPC cholestatic hepatitis and indicate a role for altered bile acid transport in its pathogenesis.  相似文献   

20.
Niemann Pick type C (NPC) disease is a progressive neurodegenerative disorder. In cells lacking functional NPC1 protein, endocytosed cholesterol accumulates in late endosomes/lysosomes. We utilized primary neuronal cultures in which cell bodies and distal axons reside in separate compartments to investigate the requirement of NPC1 protein for transport of cholesterol from cell bodies to distal axons. We have recently observed that in NPC1-deficient neurons compared with wild-type neurons, cholesterol accumulates in cell bodies but is reduced in distal axons (Karten, B., Vance, D. E., Campenot, R. B., and Vance, J. E. (2002) J. Neurochem. 83, 1154-1163). We now show that NPC1 protein is expressed in both cell bodies and distal axons. In NPC1-deficient neurons, cholesterol delivered to cell bodies from low density lipoproteins (LDLs), high density lipoproteins, or cyclodextrin complexes was transported into axons in normal amounts, whereas transport of endogenously synthesized cholesterol was impaired. Inhibition of cholesterol synthesis with pravastatin in wild-type and NPC1-deficient neurons reduced axonal growth. However, LDLs restored a normal rate of growth to wild-type but not NPC1-deficient neurons treated with pravastatin. Thus, although LDL cholesterol is transported into axons of NPC1-deficient neurons, this source of cholesterol does not sustain normal axonal growth. Over the lifespan of NPC1-deficient neurons, these defects in cholesterol transport might be responsible for the observed altered distribution of cholesterol between cell bodies and axons and, consequently, might contribute to the neurological dysfunction in NPC disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号