首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growth and persistence of two genetically manipulated forms of Lactobacillus plantarum NCDO (National Collection of Dairy Organisms) 1193 have been monitored in grass silage. Both recombinants contained pSA3, a shuttle vector for gram-positive organisms that encodes erythromycin resistance. In one of the recombinants, pSA3 was integrated onto the chromosome, whereas in the other, a pSA3 derivative designated pM25, which contains a Clostridium thermocellum cellulase gene cloned into pSA3, was maintained as an extrachromosomal element. This extrachromosomal element is a plasmid. Rifampin-resistant mutants were selected for the recombinants and the parent strain. When applied to minisilos at a rate of 106 CFU/g of grass, both the recombinants and the parent strain proliferated to dominate the epiphytic microflora and induced an increase in the decline in pH compared with that of the noninoculated silos. The presence of extra genetic material did not appear to disadvantage the bacterium in comparison with the parent strain. The selective recovery of both strains by using rifampin and erythromycin was confirmed by Southern hybridization. Interestingly, the free plasmid (pM25) appeared more stable in silage than was expected from studies in MRS broth. The plasmid was retained by 85% of the rifampin-resistant L. plantarum colonies isolated from a day 30 silo. These data answer an important question by showing that genetically manipulated recombinants of L. plantarum can proliferate and compete with epiphytic lactic acid bacteria in silage.  相似文献   

2.
The influence of pH on the type and concentration of metabolites produced from pyruvate by Lactobacillus plantarum ATCC 8014 was examined in pH-controlled fermentors at pH values of 4.5 to 6.5. Specific growth rates, cell dry weights, and diacetyl concentrations were highest at pH 5.5, with values of 0.78 h−1, 190 mg/liter, and 1.2 mM, respectively. While the conversion efficiency (millimoles of acetoin formed per millimoles of pyruvate utilized) was highest (94.6%) at pH 4.5, acetoin levels were similar (20 mM) between pH 4.5 and 5.5. Feeding stationary-phase cells exogenous pyruvate increased acetoin levels to 78 mM.  相似文献   

3.
AIMS: To compare growth of Lactobacillus plantarum on media containing hydrolysates (peptones) from cod viscera with growth on commercial media. METHODS AND RESULTS: Growth of Lact. plantarum on various fish peptones and commercial peptones/extracts was evaluated using both a Bioscreen apparatus (microtiter plates, no pH control) and fermentors (with pH control). Generally, the performance of the fish peptones was good and only beaten by the performance of yeast extract. Replacement of the 22 g l(-1) complex nitrogen source in standard MRS medium with only 5 g l(-1) fish peptone reduced the biomass yield with only 10%, whereas replacement with a mixture of 2.5 g l(-1) fish peptone and 2.5 g l(-1) yeast extract increased the biomass yield by 10%. CONCLUSIONS: Peptones derived from cod viscera support excellent growth of Lact. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: We show that peptones derived from cod viscera are promising constituents of growth media for fastidious food bacteria such as lactobacilli. Media containing these peptones show excellent performance while problems associated with the use of meat-derived peptones (BSE, kosher status) or plant-derived peptones (genetically modified organisms) are avoided.  相似文献   

4.
Bacteriocin-producing Lactobacillus plantarum LPCO10 and its non-bacteriocin-producing, bacteriocinimmune derivative, L. plantarum 55-1, were evaluated separately for growth and persistence in natural Spanish-style green olive fermentations. Both strains were genetically marked and selectively enumerated using antibiotic-containing media. Plasmid profile and bacteriocin production (bac+) were used as additional markers. When olive brines were inoculated at 105 CFU/ml, the parent strain, LPCO10, proliferated to dominate the epiphytic microflora, sharing high population levels with other spontaneously occurring lactobacilli and persisting throughout the fermentation (12 weeks). In contrast, the derivative strain could not be isolated after 7 weeks. Stability of both plasmid profile and bac+ (LPCO10 strain) or bac- (55-1 strain) phenotype was shown by L. plantarum LPCO10 and L. plantarum 55-1 isolated throughout the fermentation. Bacteriocin activity could be found in the L. plantarum LPCO10-inoculated brines only after ammonium sulfate precipitation and concentration (20 times) of the final brine. Spontaneously occurring lactobacilli and lactic coccus populations, which were isolated from each of the fermenting brines studied during this investigation, were shown to be sensitive to the bacteriocins produced by L. plantarum LPCO10 when tested by the drop diffusion test. The declines in both pH and glucose levels throughout the fermentative process were similar in L. plantarum LPCO10- and in L. plantarum 55-1-inoculated brines and were comparable to the declines in the uninoculated brines. However, the final concentration of lactic acid in L. plantarum LPCO10-inoculated brines was higher than in the L. plantarum 55-1-inoculated brines and uninoculated brines. These results indicated that L. plantarum LPCO10 may be useful as a starter culture to control the lactic acid fermentation of Spanish-style green olives.  相似文献   

5.
6.
7.
Information on the factors influencing citrate metabolism in lactobacilli is limited and could be useful in understanding the growth of lactobacilli in ripening cheese. Citrate was not used as an energy source by either Lactobacillus casei ATCC 393 or Lact. plantarum 1919 and did not affect the growth rate when co-metabolized with glucose or galactose. In growing cells, metabolism of citrate was minimal at pH 6 but significant at pH 4·5 and was greater in cells co-metabolizing galactose than in those co-metabolizing glucose or lactose. In non-growing cells, optimum utilization of citrate also occurred at pH 4·5 and was not increased substantially by the presence of fermentable sugars. In both growing and non-growing cells, acetate and acetoin were the major products of citrate metabolism; pyruvate was also produced by non-growing cells and was transformed to acetoin once the citrate was exhausted. Citrate was metabolized more rapidly than sugar by non-growing cells; the reverse was true of growing cells. Citrate metabolism by Lact. plantarum 1919 and Lact. casei ATCC 393 increased six- and 22-fold, respectively, when the cells were pre-grown on galactose plus citrate than when pre-grown on galactose only. This was probably due to induction of citrate lyase by growth on citrate plus sugar. These results imply that lactobacilli, if present in large enough numbers, can metabolize citrate in ripening cheese in the absence of an energy source.  相似文献   

8.
Oxygen Metabolism in Lactobacillus plantarum   总被引:19,自引:4,他引:15       下载免费PDF全文
Lactobacillus plantarum, although able to grow in the presence of oxygen, was found to retain a completely anaerobic metabolism. Thus, L. plantarum did not consume detectable amounts of oxygen and did not contain measureable amounts of those enzyme activities which serve to protect anaerobic cells against the lethality of O(2) (-) and of H(2)O(2). Superoxide dismutase, catalase, and peroxidase appeared to be absent from these cells. L. plantarum was unusually resistant towards hyperbaric oxygen, indicating that it did not reduce oxygen even when exposed to high concentrations of this gas. A photochemical reaction mixture, known to generate O(2) (-), did kill L. plantarum. The lethality was diminished by superoxide dismutase, catalase, or mannitol and was augmented by H(2)O(2). This suggests that the lethal agent generated in the photochemical system was primarily OH., generated from the reaction of O(2) (-) with H(2)O(2).  相似文献   

9.
As a rational approach to the genetic development of a stable lysine overproducing strain of Lactobacillus plantarum for the fermentation of 'ogi', a Nigerian fermented cereal porridge, regulation of lysine biosynthesis in this species was investigated. Spontaneous lysine overproducing mutants of Lact. plantarum were obtained and their aspartokinase activities compared with those of wild-type strains under different conditions. Results showed that aspartokinase activity of Lact. plantarum cell extracts was not inhibited by either lysine, threonine, methionine or combinations of lysine and threonine. Instead, methionine enhanced aspartokinase activity in vitro. Results indicated that lysine biosynthesis in Lact. plantarum could be regulated by lysine via the control of aspartokinase production in a way different to that described for other bacteria.  相似文献   

10.
Occurrence of choline in Lactobacillus plantarum   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly, the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence, these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux states, provided that the selective growth conditions favor yield optimization as the winning strategy.  相似文献   

13.
Glutamate-glyoxylate aminotransferase which mediates the reaction of glyoxylic acid with glutamic acid to yield glycine and alpha-oxoglutaric acid has been isolated and purified 84-fold from extracts of Lactobacillus plantarum. Purified enzyme requires the addition of pyridoxal phosphate and magnesium ions for its activity. The molecular weight of the enzyme estimated by Sepharose 4B gel filtration amounts to 37.000. Micaelis constants for glyoxylate and glutamate are corresponding to 6.25 X 10(-3) M and 2.75 X 10(-3) M, respectively. Optimal pH in phosphate and veronal buffers is 8.0 and optimal temperature 35--37 degrees C.  相似文献   

14.
Heat shock response in Lactobacillus plantarum   总被引:1,自引:0,他引:1  
Heat stress resistance and response were studied in strains of Lactobacillus plantarum. Stationary-phase cells of L. plantarum DPC2739 had decimal reduction times (D values) (D value was the time that it took to reduce the number of cells by 1 log cycle) in sterile milk of 32.9, 14.7, and 7.14 s at 60, 72, and 75 degrees C, respectively. When mid-exponential-phase cells were used, the D values decreased. The temperature increases which caused a 10-fold reduction in the D value ranged from 9 to 20 degrees C, depending on the strain. Part of the cell population treated at 72 degrees C for 90 s recovered viability during incubation at 7 degrees C in sterile milk for 20 days. When mid-exponential- or stationary-phase cells of L. plantarum DPC2739 were adapted to 42 degrees C for 1 h, the heat resistance at 72 degrees C for 90 s increased ca. 3 and 2 log cycles, respectively. Heat-adapted cells also showed increased growth at pH 5 and in the presence of 6% NaCl. Two-dimensional gel electrophoresis of proteins expressed by control and heat-adapted cells revealed changes in the levels of expression of 31 and 18 proteins in mid-exponential- and stationary-phase cells, respectively. Twelve proteins were commonly induced. Nine proteins induced in the heat-adapted mid-exponential- and/or stationary-phase cells of L. plantarum DPC2739 were subjected to N-terminal sequencing. These proteins were identified as DnaK, GroEL, trigger factor, ribosomal proteins L1, L11, L31, and S6, DNA-binding protein II HlbA, and CspC. All of these proteins have been found to play a role in the mechanisms of stress adaptation in other bacteria. Antibodies against GroES detected a protein which was induced moderately, while antibodies against DnaJ and GrpE reacted with proteins whose level of expression did not vary after heat adaptation. This study showed that the heat resistance of L. plantarum is a complex process involving proteins with various roles in cell physiology, including chaperone activity, ribosome stability, stringent response mediation, temperature sensing, and control of ribosomal function. The physiological mechanisms of response to pasteurization in L. plantarum are fundamental for survival in cheese during manufacture.  相似文献   

15.
16.
Heat Shock Response in Lactobacillus plantarum   总被引:2,自引:0,他引:2       下载免费PDF全文
Heat stress resistance and response were studied in strains of Lactobacillus plantarum. Stationary-phase cells of L. plantarum DPC2739 had decimal reduction times (D values) (D value was the time that it took to reduce the number of cells by 1 log cycle) in sterile milk of 32.9, 14.7, and 7.14 s at 60, 72, and 75°C, respectively. When mid-exponential-phase cells were used, the D values decreased. The temperature increases which caused a 10-fold reduction in the D value ranged from 9 to 20°C, depending on the strain. Part of the cell population treated at 72°C for 90 s recovered viability during incubation at 7°C in sterile milk for 20 days. When mid-exponential- or stationary-phase cells of L. plantarum DPC2739 were adapted to 42°C for 1 h, the heat resistance at 72°C for 90 s increased ca. 3 and 2 log cycles, respectively. Heat-adapted cells also showed increased growth at pH 5 and in the presence of 6% NaCl. Two-dimensional gel electrophoresis of proteins expressed by control and heat-adapted cells revealed changes in the levels of expression of 31 and 18 proteins in mid-exponential- and stationary-phase cells, respectively. Twelve proteins were commonly induced. Nine proteins induced in the heat-adapted mid-exponential- and/or stationary-phase cells of L. plantarum DPC2739 were subjected to N-terminal sequencing. These proteins were identified as DnaK, GroEL, trigger factor, ribosomal proteins L1, L11, L31, and S6, DNA-binding protein II HlbA, and CspC. All of these proteins have been found to play a role in the mechanisms of stress adaptation in other bacteria. Antibodies against GroES detected a protein which was induced moderately, while antibodies against DnaJ and GrpE reacted with proteins whose level of expression did not vary after heat adaptation. This study showed that the heat resistance of L. plantarum is a complex process involving proteins with various roles in cell physiology, including chaperone activity, ribosome stability, stringent response mediation, temperature sensing, and control of ribosomal function. The physiological mechanisms of response to pasteurization in L. plantarum are fundamental for survival in cheese during manufacture.  相似文献   

17.
The formation of “bloaters” (hollow stock) in cucumbers brined for salt-stock purposes at 5 to 10% salt has been associated with gaseous fermentation caused chiefly by yeasts. Recently, serious early bloater damage, not attributable to yeasts, has been observed in commercial-scale experiments on control of bloaters in overnight dill pickles brined in 50-gal barrels at 3.0 to 4.5% salt. Growth of fermentative species of yeasts was effectively controlled by the addition of 0.025, 0.05, and 0.1% sorbic acid or its sodium salt. In contrast to this, the fermenting brines showed extremely high populations of acid-forming bacteria, identified as Lactobacillus plantarum, L. brevis, and Pediococcus cerevisiae. The gas-forming species (i.e., L. brevis) constituted a high proportion of the total populations. Representative isolates from 36 barrels of overnight dill pickles were tested for their ability to produce bloaters in 1-quart jars of pasteurized cucumbers equilibrated at 4 to 5% salt, 0.25% lactic acid, and pH 4.0. Bloaters, identical with those made by yeast cultures, were produced in all jars inoculated with L. brevis. No bloaters were produced by L. plantarum and P. cerevisiae. These results suggest that the control of bloater damage in cucumber fermentations, particularly at low salt concentrations, may necessitate inhibition of gas-forming lactic acid bacteria.  相似文献   

18.
Lactobacilli are known to use plant materials as a food source. Many such materials are rich in rhamnose-containing polyphenols, and thus it can be anticipated that lactobacilli will contain rhamnosidases. Therefore, genome sequences of food-grade lactobacilli were screened for putative rhamnosidases. In the genome of Lactobacillus plantarum, two putative rhamnosidase genes (ram1Lp and ram2Lp) were identified, while in Lactobacillus acidophilus, one rhamnosidase gene was found (ramALa). Gene products from all three genes were produced after introduction into Escherichia coli and were then tested for their enzymatic properties. Ram1Lp, Ram2Lp, and RamALa were able to efficiently hydrolyze rutin and other rutinosides, while RamALa was, in addition, able to cleave naringin, a neohesperidoside. Subsequently, the potential application of Lactobacillus rhamnosidases in food processing was investigated using a single matrix, tomato pulp. Recombinant Ram1Lp and RamALa enzymes were shown to remove the rhamnose from rutinosides in this material, but efficient conversion required adjustment of the tomato pulp to pH 6. The potential of Ram1Lp for fermentation of plant flavonoids was further investigated by expression in the food-grade bacterium Lactococcus lactis. This system was used for fermentation of tomato pulp, with the aim of improving the bioavailability of flavonoids in processed tomato products. While import of flavonoids into L. lactis appeared to be a limiting factor, rhamnose removal was confirmed, indicating that rhamnosidase-producing bacteria may find commercial application, depending on the technological properties of the strains and enzymes.Lactobacilli such as Lactobacillus plantarum have been used for centuries to ferment vegetables such as cabbage, cucumber, and soybean (34). Fruit pulps, for instance, those from tomato, have also been used as a substrate for lactobacilli for the production of probiotic juices (38). Recently, the full genomic sequences of several lactobacilli have become available (1, 22). A number of the plant-based substrates for lactobacilli are rich in rhamnose sugars, which are often conjugated to polyphenols, as in the case of cell wall components and certain flavonoid antioxidants. Utilization of these compounds by lactobacilli would involve α-l-rhamnosidases, which catalyze the hydrolytic release of rhamnose. Plant-pathogenic fungi such as Aspergillus species produce the rhamnosidases when cultured in the presence of naringin, a rhamnosilated flavonoid (24, 26). Bacteria such as Bacillus species have also been shown to use similar enzyme activities for metabolizing bacterial biofilms which contain rhamnose (17, 40).In food processing, rhamnosidases have been applied primarily for debittering of citrus juices. Part of the bitter taste of citrus is caused by naringin (Fig. (Fig.1),1), which loses its bitter taste upon removal of the rhamnose (32). More recently, application of rhamnosidases for improving the bioavailability of flavonoids has been described. Human intake of flavonoids has been associated with a reduced risk of coronary heart disease in epidemiological studies (19). Food flavonoids need to be absorbed efficiently from what we eat in order to execute any beneficial function. Absorption occurs primarily in the small intestine (12, 37). Unabsorbed flavonoids will arrive in the colon, where they will be catabolized by the microflora, which is then present in huge quantities. Therefore, it would be desirable for flavonoids to be consumed in a form that is already optimal for absorption in the small intestine prior to their potential degradation. For the flavonoid quercetin, it has been demonstrated that the presence of rhamnoside groups inhibits its absorption about fivefold (20). A number of flavonoids which are present in frequently consumed food commodities, such as tomato and citrus products, often carry rutinoside (6-β-l-rhamnosyl-d-glucose) or neohesperidoside (2-β-l-rhamnosyl-d-glucose) residues (Fig. (Fig.1).1). Therefore, removal of the rhamnose groups from such flavonoid rutinosides and neohesperidosides prior to consumption could enhance their intestinal absorption. With this aim, studies were recently carried out toward the application of fungal enzyme preparations as a potential means to selectively remove rhamnoside moieties (16, 30).Open in a separate windowFIG. 1.Chemical structures of rhamnose-containing flavonoids from plants. Relevant carbon atoms in glycoside moieties are numbered. (1) Rutin (quercetin-3-glucoside-1→6-rhamnoside); (2) narirutin (naringenin-7-glucoside-1→6-rhamnoside); (3) naringin (naringenin-7-glucoside-1→2-rhamnoside); (4) p-nitrophenol-rhamnose.In view of the frequent occurrence of lactobacilli on decaying plant material and fermented vegetable substrates, one could anticipate that their genomes carry one or more genes encoding enzymes capable of utilizing rhamnosilated compounds. In the work reported here, we describe the identification of three putative rhamnosidase genes in lactobacillus genomes. We expressed these genes in Escherichia coli and characterized their gene products. The activities of all three lactobacillus rhamnosidases on flavonoids naturally present in tomato pulp were then assessed. One of the L. plantarum genes, which encoded the enzyme with the highest activity and stability in E. coli, was then also expressed in Lactococcus lactis, with the aim of investigating the potential use of such a recombinant organism to improve the bioavailability of fruit flavonoids and thus their efficacy in common foodstuffs.  相似文献   

19.
It was found that Lactobacillus plantarum (strain BA 11) is able to synthesize sialic acids during its growth in MRS medium and that these molecules are located mainly on the surface of the bacterium. It was demonstrated also that the addition externally of N-acetylneuraminic acid in concentrations ranged from 10 to 500 microM into the culture medium, resulted to a substantial increase of the growth rate of the bacterium. Bacterial cultures in presence of added sialic acid (100 microM) for 24 hours, resulted to a two fold increase of the final bacterial mass compared to the cultures in absence of sialic acid. Maximum levels of sialic acids were observed after 48 h of bacterial growth. It was also found that neuraminic acids production was increased when Mn++ and Mg++ ions were added in the culture medium, while the addition of Co++, Ca++, Ba++, Cu++ and Ni++ had a negative effect.  相似文献   

20.
目的通过对一株植物乳杆菌代谢产物的抑菌作用以及该产物的某些物理特性的研究,为进一步发现可替代现有抗生素的抗菌物质奠定基础。方法首先利用低温离心和超滤法对植物乳杆菌培养后的上清液进行初步提取,用打孔法行抑菌试验,明确其对铜绿假单胞菌、大肠埃希菌、肺炎克雷伯菌和金黄色葡萄球菌等临床分离菌株的抑菌活性;并进一步经加热、调整pH及过氧化氢酶等处理上清液后,再验证其活性变化。结果植物乳杆菌的培养上清液对铜绿假单胞菌等多株临床分离菌株均具有一定的抑菌活性,且以pH在6以内时该物质抑菌活性较好,过氧化氢酶处理后或加热至100℃、30min,上清液的抑菌活性依然存在。结论在植物乳杆菌的培养上清液中存在着具有抑菌活性的物质,对从临床标本所分离的部分革兰阴性菌及革兰阳性菌有抑菌作用,该物质对热耐受,其活性受pH变化的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号