首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discovery of estrogen receptors (ER) in the central nervous system and the ability of estrogens to modulate neural circuitry and act as neurotrophic factors, suggest a therapeutic role of this steroid. To gain better understanding of the specificity and cellular mechanisms involved in estrogen-mediated neuroprotection, a mouse hippocampal neuronal cell line (HT22) was evaluated. Earlier reports indicated this cell line was devoid of ERs. Contrary to these findings, characterization of HT22 cells using RT-PCR, immunoblot, immunocytochemical, and radioligand binding techniques revealed endogenous expression of ER. The predominant subtype appeared to be ERalpha with functional activity confirmed using an ERE-tk-luciferase assay. The ability of an ER antagonist, ICI-182780, to block the neuroprotective effects of estrogens confirmed ER was involved mechanistically in neuroprotection. In conclusion, HT22 cells express functional ERalpha or a closely related ER enabling this cell line to be used to profile estrogens for neuroprotective properties acting via an ER-dependent mechanism.  相似文献   

2.
The significantly higher incidence of Alzheimer's disease (AD) in women than in men has been attributed to loss of estrogen and a variety of related mechanisms at the molecular, cellular, and hormonal levels, which subsequently elucidate neuroprotective roles of estrogen against AD-related pathology. Recent studies have proposed that beneficial effects of estrogen on AD are directly linked to its ability to reduce amyloid-β peptides and tau aggregates, two hallmark lesions of AD. Despite high expectations, large clinical trials with postmenopausal women indicated that the beneficial effects of estrogen therapies were insignificant and, in fact, elicited adverse effects. Here, we review the current status of AD prevention and treatment using estrogens focusing on recent understandings of their biochemical links to AD pathophysiology. This review also discusses development of selective ligands that specifically target either estrogen receptor α (ERα) or ERβ isoforms, which are potentially promising strategies for safe and efficient treatment of AD.  相似文献   

3.
Estrogens possess neuroprotective and antiapoptotic properties, however, the issue of involvement of estrogen receptors (ER)-dependent genomic pathway in these effects still remains controversial. Moreover, the majority of data on antiapoptotic effects of estrogens concern non-neuronal cells. In the present study we compared effects of the potent ER agonist, estradiol-17beta (E2), and its metabolite with a weak affinity for ER, estriol, on the neurotoxicity induced by high (1 and 5 mM) NMDA concentrations and on the apoptosis induced by low (0.1 mM) concentration of NMDA in rat primary cortical neurons. The obtained data showed that 24-hour exposure of cortical neurons to NMDA (0.1-5 mM) resulted in a dose-dependent increase in LDH level. Twenty four-hour pretreatment with estriol (100 nM and 500 nM) reduced the NMDA (1 and 5 mM)-induced toxicity by 16-26%, while estradiol-17beta (500 nM) reduced NMDA (5 mM)- induced toxicity by 14%. Twenty four hour exposure of cortical neurons to NMDA (0.1 mM) resulted in decrease of the level of antiapoptotic protein - Bcl-2 by 60% and increased the number of apoptotic cells by 50% compared to the control. Twenty four hour pretreatment with estradiol-17beta or estriol (100 and 1000 nM) prevented the NMDA-induced apoptotic changes. The specific estrogen receptor antagonist ICI 182,780 (100 nM) had no effect alone and did not antagonize the effects of estrogens on NMDA-induced toxicity as well as on changes in Bcl-2 level. The higher efficacy of estriol, together with the fact that the specific ER receptor antagonist, ICI 182,780, did not inhibit the above-described effects support the hypothesis about a nongenomic mechanism of the anti-NMDA action of estrogens.  相似文献   

4.
Adult sexual dimorphism in neuronal cell number is controlled by estrogen exposure during a tightly defined period of rat brain development. The mechanisms of estrogen's effect are unknown; one possibility is regulation of programmed cell death (apoptosis). In this study we have shown that estradiol can function as a neuroprotective agent or an inducer of apoptosis, depending on the estrogen receptor‐subtype present in the cell. Thus, ERα has a neuroprotective effect, while ERβ mediates the induction of apoptosis in neuronal cells. Moreover, we show that estrogen‐induced apoptosis through ER‐β requires the expression of Fas‐ and Fas ligand (FasL) proteins, since the absence of FasL in neurons prevents this effect. Furthermore, we demonstrate that microglia‐secreted products induce the expression of FasL necessary to mediate estradiol–ERβ apoptotic effect. These findings may explain the dichotomous effect of fetal estradiol on the adult neuronal number. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 64–78, 2000  相似文献   

5.
Estrogen treatment exerts a protective effect on experimental autoimmune encephalomyelitis (EAE) and is under clinical trial for multiple sclerosis therapy. Estrogens have been suspected to protect from CNS autoimmunity through their capacity to exert anti-inflammatory as well as neuroprotective effects. Despite the obvious impacts of estrogens on the pathophysiology of multiple sclerosis and EAE, the dominant cellular target that orchestrates the anti-inflammatory effect of 17β-estradiol (E2) in EAE is still ill defined. Using conditional estrogen receptor (ER) α-deficient mice and bone marrow chimera experiments, we show that expression of ERα is critical in hematopoietic cells but not in endothelial ones to mediate the E2 inhibitory effect on Th1 and Th17 cell priming, resulting in EAE protection. Furthermore, using newly created cell type-specific ERα-deficient mice, we demonstrate that ERα is required in T lymphocytes, but neither in macrophages nor dendritic cells, for E2-mediated inhibition of Th1/Th17 cell differentiation and protection from EAE. Lastly, in absence of ERα in host nonhematopoietic tissues, we further show that ERα signaling in T cells is necessary and sufficient to mediate the inhibitory effect of E2 on EAE development. These data uncover T lymphocytes as a major and nonredundant cellular target responsible for the anti-inflammatory effects of E2 in Th17 cell-driven CNS autoimmunity.  相似文献   

6.
7.
By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell-type and tissue-type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the "detrimental," proliferative effects in reproductive tissues and organs.  相似文献   

8.
Novel mechanisms for estrogen-induced neuroprotection   总被引:4,自引:0,他引:4  
Estrogens are gonadal steroid hormones that are present in the circulation of both males and females and that can no longer be considered within the strict confines of reproductive function. In fact, the bone, the cardiovascular system, and extrahypothalamic regions of the brain are now well-established targets of estrogens. Among the numerous aspects of brain function regulated by estrogens are their effects on mood, cognitive function, and neuronal viability. Here, we review the supporting evidence for estrogens as neuroprotective agents and summarize the various mechanisms that may be involved in this effect, focusing particularly on the mitochondria as an important target. On the basis of this evidence, we discuss the clinical applicability of estrogens in treating various age-related disorders, including Alzheimer disease and stroke, and identify the caveats that must be considered.  相似文献   

9.
Steroid hormones and carcinogenesis of the prostate: the role of estrogens   总被引:2,自引:0,他引:2  
Abstract Androgens have long been known to be the major sex hormones that target the prostate during development, maturation, and carcinogenesis. It is now apparent that estrogens, both those synthesized by the body as well as those from our environment, also target the prostate during all stages of development. Little is known about the mechanisms involved in estrogen stimulation of carcinogenesis and less is known about how to prevent or treat prostate cancer through estrogenic pathways. To better understand how estrogens mediate their carcinogenic effects, the respective roles of estrogen receptor (ER)-α and ER-β must be elucidated in the epithelial and stromal cells that constitute the prostate. Lastly, the significance of ER signaling during various ontogenic periods must be determined. Answers to these questions will further our understanding of the mechanisms of estrogen/ER signaling and will serve as a basis for chemopreventive and/or chemotherapeutic strategies for prostate cancer.  相似文献   

10.
The pivotal role of estrogens in the pain sensitivity has been investigated in many ways. Traditionally, it is ascribed to the slow genomic changes mediated by classical nuclear estrogen receptors (ER), ER?? and ER??, depending on peripheral estrogens. Recently, it has become clear that estrogens can also signal through membrane ERs (mERs), such as G-protein-coupled ER1 (GPER1), mediating the non-genomic effects. However, the spinal specific role played by ERs and the underlying cellular mechanisms remain elusive. The present study investigated the rapid estrogenic regulation of nociception at the spinal level. Spinal administration of 17??-estradiol (E2), the most potent natural estrogen, acutely produced a remarkable mechanical allodynia and thermal hyperalgesia without significant differences among male, female and ovariectomized (Ovx) rats. E2-induced the pro-nociceptive effects were partially abrogated by ICI 182,780 (ERs antagonist), and mimicked by E2-BSA (a mER agonist). Inhibition of local E2 synthesis by 1,4,6-Androstatrien-3,17-dione (ATD, a potent irreversible aromatase inhibitor), or blockade of ERs by ICI 182,780 produced an inhibitory effect on the late phase of formalin nociceptive responses. Notably, lumbar puncture injection of G15 (a selective GPER1 antagonist) resulted in similar but more efficient inhibition of formalin nociceptive responses as compared with ICI 182,780. At the cellular level, the amplitude and decay time of spontaneous inhibitory postsynaptic currents were attenuated by short E2 or E2-BSA treatment in spinal slices. These results indicate that estrogen acutely facilitates nociceptive transmission in the spinal cord via activation of membrane-bound estrogen receptors.  相似文献   

11.
Activity of magnocellular vasopressin (VP) neurons in the human hypothalamus is sex- and age-dependent as judged from the size of the Golgi apparatus, neuronal size and VP mRNA levels. These parameters are significantly higher in young (< or = 50 years old) men than in young women and are markedly increased in postmenopausal women compared to premenopausal women. This data suggest an inhibitory effect of estrogens on metabolic activity of VP neurons in the human supraoptic nucleus (2SON), which is likely to be mediated via estrogen receptor (ER) beta. Estrogens were shown to mediate their inhibitory effect via ER beta. It is expressed to a much higher degree in the SON of young women than in other groups, whereas estrogen receptor alpha, that mediates stimulatory effects of estrogens, is present in a small proportion of SON neurons. In addition, estrogens inhibit p75 neurotrophin receptor expression in VP cells. In conclusion, we discuss the inhibitory role of estrogens in functional activity of human VP neurons, which is most probably mediated directly via ER beta and indirectly by p75 neurotrophin receptor.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号