首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the regulation of cytosolic calcium Ca(2+) levels ([Ca(2+)](i)) in breast cancer cells. We investigated the existence of capacitative calcium entry (CCE) in the tumorigenic cell line MCF-7 and its responsiveness to ATP. MCF-7 cells express purinergic receptors as well as estrogen receptors (ER). Depletion of calcium stores with thapsigargin (TG, 500 nM) or ATP (10 microM) in the absence of extracellular Ca(2+), resulted in a rapid and transient elevation in [Ca(2+)](i). After recovery of basal levels, Ca(2+) readmission (1.5 mM) to the medium increased Ca(2+) influx (twofold over basal), reflecting pre-activation of a CCE pathway. Cells pretreated with TG were unable to respond to ATP, thus indicating that the same Ca(2+) store is involved in their response. Moreover, IP(3)-dependent ATP-induced calcium mobilization and CCE were completely blocked using compound U-73122, an inhibitor of phospholipase C. Compound 2-APB (75 microM) and Gd(3+) (10 microM), antagonists of the CCE pathway, completely prevented ATP-stimulated capacitative Ca(2+) entry. CCE in MCF-7 cells was highly permeable to Mn(2+) and to the Ca(2+) surrogate Sr(2+). Mn(2+) entry sensitivity to Gd(3+) matched that of the Ca(2+) entry pathway. 17Beta-estradiol blocked ATP-induced CCE, but was without effect on TG-induced CCE. Besides, the estrogen blockade of the ATP-induced CCE was completely abolished by preincubation of the cells with an ER monoclonal antibody. ER alpha immunoreactivity could also be detected in a purified plasma membrane fraction of MCF-7 cells. These results represent the first evidence on the operation of a ATP-responsive CCE pathway in MCF-7 cells and also indicate that 17beta-estradiol interferes with this mechanism by acting at the cell surface level.  相似文献   

2.
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis. Copyright Wiley-Liss, Inc.  相似文献   

3.
Capacitative calcium entry (CCE), the mechanism that replenishes the internal Ca2+ stores with Ca2+ from the extracellular milieu in response to depletion of the store, is mediated by Ca2+ channels in the plasma membrane generally referred to as store-operated channels (SOCs). However, the roles of SOCs in the more physiological context have been fully elucidated. 2-Aminoethyl diphenylborinate (2-APB) strongly inhibits SOCs, as well as inositol-1,4,5 trisphosphate (IP3) receptors. In the present study, we screened a library of 166 2-APB analogues for effects on CCE and IP3-induced Ca2+ release in order to discover specific SOC inhibitors, and found that some blocked both store-operated and receptor-operated Ca2+ influx more strongly and selectively than 2-APB. Indeed, these new compounds ceased the prolonged intracellular Ca2+ oscillations induced by a low concentration of ATP in CHO-K1 cells. These novel SOC inhibitors will be valuable pharmacological and biochemical tools for elucidating the physiological roles.  相似文献   

4.
Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries.  相似文献   

5.
Arachidonic acid (AA) plays important physiological or pathophysiological roles. Here, we show in cultured rat astrocytes that: (i) endothelin-1 or thapsigargin (Tg) induces store-depleted activated Ca2+ entry (CCE), which is inhibited by 2-aminoethoxydiphenyl borane (2-APB) or La3+; (ii) AA (10 μM) and other unsaturated fatty acids (8,11,14-eicosatrienoic acid and γ-linoleic acid) have an initial inhibitory effect on the CCE, due to AA- or fatty acid-induced internal acid load; (iii) after full activation of CCE, AA induces a further Ca2+ influx, which is not inhibited by 2-APB or La3+, indicating that AA activates a second Ca2+ entry pathway, which coexists with CCE; and (iv) Tg or AA activates two independent and co-existing non-selective cation channels and the Tg-induced currents are initially inhibited by addition of AA or weak acids. A possible pathophysiological effect of the AA-induced [Ca]i overload is to cause delayed cell death in astrocytes.  相似文献   

6.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

7.
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.  相似文献   

8.
Vascular damage signals smooth muscle cells to proliferate, often exacerbating existing pathologies. Although the role of changes in "global" Ca2+ in vascular smooth muscle (VSM) cell dedifferentiation has been studied, the role of specific Ca2+ signals in determining VSM phenotype remains relatively unexplored. Earlier work with cultured VSM cells suggests that inositol 1,4,5-trisphosphate receptor (IP3R) expression and sarcoplasmic reticulum (SR) Ca2+ release may be linked to VSM cell proliferation in native tissue. Thus we hypothesized that SR Ca2+ release through IP3Rs in the form of discrete transient signals is necessary for VSM cell proliferation. To investigate this hypothesis, we used mouse cerebral arteries to design an organ culture system that permitted examination of Ca2+ dynamics in native tissue. Explanted arteries were cultured in normal medium with 10% FBS, and appearance of individual VSM cells migrating from explanted arteries (outgrowth cells) was tracked daily. Initial exposure to 10% FBS increased Ca2+ waves in myocytes in the arteries that were blocked by the IP3R antagonist 2-aminoethoxydiphenylborate (2-APB). Inhibition of IP3R opening (via 100 microM 2-APB, 10 microM xestospongin C, or 25 microM U-73122) dramatically reduced outgrowth cell number compared with untreated or ryanodine-treated (10 microM) arteries. Consistent with this finding, 2-APB inhibited cell proliferation, as measured by reduced proliferating cell nuclear antigen immunostaining within 48 h of culture but did not inhibit cell migration. These results indicate that activation of IP3R Ca2+ release is required for VSM cell proliferation in these arteries.  相似文献   

9.
Role of capacitative Ca2+ entry in bronchial contraction and remodeling.   总被引:4,自引:0,他引:4  
Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+ in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents (I(SOC)) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+ channels by Ni2+ decreased I(SOC) and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I(SOC), enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.  相似文献   

10.
A capacitative Ca2+ entry (CCE) pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC). However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO) synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE) pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.  相似文献   

11.
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells.  相似文献   

12.
The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.  相似文献   

13.
Prolonged hypoxia exerts profound effects on cell function, and has been associated with increased production of amyloid beta peptides (A beta Ps) of Alzheimer's disease. Here, we have investigated the effects of chronic hypoxia (2.5% O2, 24 h) on capacitative Ca2+ entry (CCE) in primary cultures of rat type-I cortical astrocytes, and compared results with those obtained in astrocytes exposed to A beta Ps. Chronic hypoxia caused a marked enhancement of CCE that was observed after intracellular Ca2+ stores were depleted by bradykinin application or by exposure to thapsigargin (1 microM). Exposure of cells for 24 h to 1 microM A beta P(1-40) did not alter CCE. Enhancement of CCE was not attributable to cell hyperpolarization, as chronically hypoxic cells were significantly depolarized as compared with controls. Mitochondrial inhibition [by FCCP (10 microM) and oligomycin (2.5 microg/mL)] suppressed CCE in all three cell groups, but more importantly there were no significant differences in the magnitude of CCE in the three astrocyte groups under these conditions. Similarly, the antioxidants melatonin and Trolox abolished the enhancement of CCE in hypoxic cells. Our results indicate that chronic hypoxia augments CCE in cortical type-I astrocytes, a finding which is not mimicked by A beta P(1-40) and appears to be dependent on altered mitochondrial function.  相似文献   

14.
Pulmonary vascular medial hypertrophy due to proliferation of pulmonary artery smooth muscle cells (PASMC) greatly contributes to the increased pulmonary vascular resistance in pulmonary hypertension patients. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) is an important stimulus for cell growth in PASMC. Resting [Ca2+]cyt, intracellularly stored [Ca2+], capacitative Ca2+ entry (CCE), and store-operated Ca2+ currents (I(SOC)) are greater in proliferating human PASMC than in growth-arrested cells. Expression of TRP1, a transient receptor potential gene proposed to encode the channels responsible for CCE and I(SOC), was also upregulated in proliferating PASMC. Our aim was to determine if inhibition of endogenous TRP1 gene expression affects I(SOC) and CCE and regulates cell proliferation in human PASMC. Cells were treated with an antisense oligonucleotide (AS, for 24 h) specifically designed to cleave TRP1 mRNA and then returned to normal growth medium for 40 h before the experiments. Then, mRNA and protein expression of TRP1 was downregulated, and amplitudes of I(SOC) and CCE elicited by passive depletion of Ca2+ from the sarcoplasmic reticulum using cyclopiazonic acid were significantly reduced in the AS-treated PASMC compared with control. Furthermore, the rate of cell growth was decreased by 50% in AS-treated PASMC. These results indicate that TRP1 may encode a store-operated Ca2+ channel that plays a critical role in PASMC proliferation by regulating CCE and intracellular [Ca2+](cyt).  相似文献   

15.
16.
Several regulated Ca2+ entry pathways have been identified, with capacitative Ca2+ entry (CCE) being the most characterized. In the present study, we examined Ca2+ entry pathways regulated by arachidonic acid (AA) in mouse parotid acini. AA induced Ca2+ release from intracellular stores, and increased Ca2+ entry. AA inhibited thapsigargin (Tg)-induced CCE, whereas AA activated Ca2+ entry when CCE was blocked by gadolinium (Gd3+). AA-induced Ca2+ entry was associated with depletion of calcium from ryanodine-sensitive stores; both AA-induced Ca2+ release and Ca2+ entry were inhibited by tetracaine and the nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI). The nitric oxide (NO) donor, 1,2,3,4-ox-triazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), but not 8-bromo-cGMP, mimicked the effects of AA in inhibiting CCE. Results suggest that AA acts via nitric acid to inhibit the CCE pathway that is selective for Ca2+, and to activate a second Ca2+ entry pathway that is dependent on depletion of Ca2+ from ryanodine-sensitive stores.  相似文献   

17.
Bronchial epithelial cells respond to extracellular nucleotides from the luminal and basolateral side activating Cl- secretion via [Ca2+]i increase. In this study we investigated the differences of apically (ap) and basolaterally (bl) stimulated [Ca2+]i signals in polarized human bronchial epithelial cells (16HBE14o-). Specifically we investigated the localization of 'capacitative Ca2+ entry' (CCE). 16HBE14o- cells grown on permeable filters were mounted into an Ussing chamber built for the simultaneous measurement of Fura-2 fluorescence and electrical properties. Application of ATP from both sides induced a rapid [Ca2+]i increase and subsequent sustained [Ca2+]i plateau due to transmembraneous Ca(2+)-influx. The use of different nucleotides revealed the following rank order or potency which was very similar for addition from the apical or basolateral side: UTP (EC50 ap: 4 microM, bl: 5 microM) > ATP (EC50 ap: 4 microM, bl: 10 microM) > ADP (n = 4-7 from both sides). 2-MeS-ATP, AMP, adenosine and beta gamma-methylene ATP were ineffective (n = 3 from both sides). The ATP- (ap and bl) induced Ca2+ influx was only abolished by removal of basolateral Ca2+. This was also true for receptor-independent activation of Ca(2+)-influx by intracellular Ca(2+)-store depletion with 2,5 Di-(tert-butyl)-1,4-benzohydroquinone (BHQ) (10 microM). Also in polarized T84 cells the basolateral carbachol and BHQ activated Ca2+ plateau was exclusively sensitive to removal of basolateral Ca2+. We propose that in all polarized epithelial cells the CCE entry pathway is located in the basolateral membrane. We furthermore suggest that Ca2+[i elevating agonists acting from the apical side of the epithelium lead to the opening of a basolateral CCE pathway.  相似文献   

18.
It has been reported that store-mediated Ca2+ entry (SMCE) in human platelets is likely to be mediated by a secretion-like coupling mechanism. Recently, 2-aminoethoxydiphenylborate (2-APB) has been used in the investigation of SMCE. Here, the mechanism of action of 2-APB is investigated in human platelets. In a Ca2+-free medium (EGTA added), addition of 0.1 U/ml thrombin caused an elevation in [Ca2+]i. Preincubation with 100 microM 2-APB for 170s abolished the release of internal Ca2+. In platelets whose internal Ca2+ stores had been depleted by treatment with 200 nM thapsigargin, addition of extracellular Ca2+ caused an elevation in [Ca2+]i indicative of SMCE. Preincubation with 2-APB decreased SMCE by 95.5+/-1.1%. After activation of SMCE, addition of 2-APB rapidly decreased [Ca2+]i to basal levels; in contrast, the coupling between Trp1 and IP3RII, which has been shown to play an important role in SMCE in platelets, remained intact at the same time points. The rate of decrease of [Ca2+]i and the absence of measurable latency in the effect of 2-APB were comparable to the effects of La3+ (a cation channel blocker). These data suggest that 2-APB may act as a blocker of Ca2+ permeable plasma membrane channels. These data provide further information regarding the mechanism and site of action of 2-APB and highlight the necessity of careful interpretation of work performed using this molecule.  相似文献   

19.
The action of 2-aminoethoxydiphenyl borate (2-APB) on Ca(2+) signalling in HeLa cells and cardiac myocytes was investigated. Consistent with other studies, we found that superfusion of cells with 2-APB rapidly inhibited inositol 1,4,5-trisphosphate (InsP(3))-mediated Ca(2+) release and store-operated Ca(2+) entry (SOC). In addition to abrogating hormone-evoked Ca(2+) responses, 2-APB could antagonise Ca(2+) signals evoked by a membrane permeant InsP(3) ester. 2-APB also slowed the recovery of intracellular Ca(2+) signals consistent with an effect on Ca(2+) ATPases. The inhibitory action of 2-APB on InsP(3) receptors (InsP(3)Rs), SOC channels and Ca(2+) pumps persisted for several minutes after washout of the compound. Application of 2-APB to unstimulated cells had no effect on subsequent Ca(2+) responses suggesting that it has a use-dependent action. Mitochondria in cells treated with 2-APB showed a rapid and slowly reversible swelling. 2-APB did not cause the mitochondria to depolarise, but it reduced the extent of mitochondrial calcium uptake. Although 2-APB has been demonstrated not to affect voltage-operated Ca(2+) channels or ryanodine receptors, we found that it gave a concentration-dependent long-lasting inhibition of Ca(2+) signalling in electrically-stimulated cardiac myocytes, where InsP(3)Rs and SOC channels do not play a significant role. Our data suggest that 2-APB has multiple cellular targets, a use-dependent action, is difficult to reverse and may affect Ca(2+) signalling in cell types where InsP(3) and SOC are not active.  相似文献   

20.
Intracellular Ca2+ signalling evoked by Ca2+ mobilizing agonists, like angiotensin II in the adrenal gland, involves the activation of inositol(1,4,5)trisphosphate(InsP3)-mediated Ca2+ release from internal stores followed by activation of a Ca2+ influx termed capacitative calcium entry. Here we report the amino acid sequence of a functional capacitative Ca2+ entry (CCE) channel that supports inward Ca2+ currents in the range of the cell resting potential. The expressed CCE channel opens upon depletion of Ca2+ stores by InsP3 or thapsigargin, suggesting that the newly identified channel supports the CCE coupled to InsP3 signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号