首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the significance of endogenous stores of glycogen in specific fiber types (I, IIa, IIb) of the costal region of the diaphragm, adult male Wistar rats performed continuous running (25 m/min, 8 degrees grade) exercise for either 30 min or until fatigue. At 30 min of exercise, glycogen loss, as measured microphotometrically using the periodic acid-Schiff technique averaged between 73 and 80% (P less than 0.05) in the different fiber types. When exercise was performed to exhaustion, representing an additional 94 min, no further reduction in glycogen was observed in any fiber type. Biochemical determinations of glycogen from the diaphragm confirmed the extensive reduction in glycogen concentration with exercise. Large reductions (P less than 0.05) in glycogen were also noted in the soleus, plantaris, and vastus lateralis red. Although significant depletion (P less than 0.05) occurred in the vastus lateralis white, it was not as pronounced as in these other muscles. Repletion to preexercise glycogen concentration was complete by 4 h of recovery in all muscles except the vastus lateralis white. It is concluded that endogenous glycogen is a significant substrate in all muscles sampled regardless of fiber composition. In the case of the costal region of the diaphragm, the increased work of breathing resulting from heavy exercise leads to the recruitment of all fiber types, and each fiber type depends on glycogen as a substrate at least early in the exercise.  相似文献   

2.
Endurance-training-induced cellular adaptations in respiratory muscles   总被引:3,自引:0,他引:3  
Controversy exists concerning the adaptability of mammalian respiratory muscles in response to endurance training. We examined the effects of 8 wk of progressive treadmill exercise (45 min/day 5 days/wk) on the biochemical adaptations of rat diaphragm and intercostal muscles. Female Sprague-Dawley rats were randomly assigned to a sedentary control (n = 10) or an exercise-training group (n = 10). Endurance training resulted in an enhanced oxidative capacity in the anterior costal diaphragm as evidenced by a 29% increase (P less than 0.05) in the activity of succinate dehydrogenase (SDH) in trained animals compared with controls (4.15 +/- 0.13 vs. 3.21 +/- 0.17 mumol.g-1.min-1). Similarly, SDH activity in the intercostal muscles was 32% greater (P less than 0.05) in the trained animals than in the untrained animals (1.72 +/- 0.11 vs. 1.30 +/- 0.06 mumol.g-1.min-1). In contrast, the crural region of the diaphragm showed no significant increase (P greater than 0.05) in oxidative capacity as a result of the training program (3.28 +/- 0.12 vs. 3.13 +/- 0.18). Furthermore, training did not alter (P less than 0.05) lactate dehydrogenase activity in the intercostals or in the crural or the costal diaphragm. These data demonstrate that the oxidative capacity of the costal diaphragm and the intercostal muscles can be enhanced by increasing respiratory loads via regular endurance exercise. We speculate that the lack of metabolic adaptation in the crural region of the diaphragm was not due to limited plasticity of the fibers in this area but to failure to the exercise-training program to provide the appropriate stimulus for cellular adaptation.  相似文献   

3.
Using the glycogen depletion technique, we have examined utilization of specific fibre types during prolonged submaximal exercise to investigate the recruitment pattern employed by the central nervous system to sustain force generation in the face of a progressive glycogen depletion. Six male subjects (Vo2 max, 52.8 +/- 2.5 mL.kg-1.min-1, mean +/- SE) cycled at 59% of pretraining Vo2 max (the same absolute power output) for 99.5 +/- 6 min on two occasions, before training and after 10-12 days of intensive training, involving 2 h of cycling per day. Prior to the training, glycogen concentration during exercise in the type I and type IIA fibres of the vastus lateralis muscle as measured by microphotometric techniques was progressively reduced during exercise. The pattern of depletion in both of these fibre types was parallel and showed an early marked depletion amounting to 51 (p less than 0.05) and 35% (p less than 0.05) in the type I and type IIA fibres, respectively, during the first 15 min of exercise. At the end of exercise, glycogen levels in type I and type IIA fibres were reduced to 9 and 44% of initial levels, respectively. In contrast, glycogen concentration in type IIB fibres was not significantly (p less than 0.05) altered throughout the exercise. Following training, a pronounced glycogen sparing occurred that was conspicuous in only the type I and type IIA fibres, which was most pronounced during the first 15 min of the exercise. Similar to pretraining, glycogen concentrations in type IIB fibres were unaffected by either exercise or training.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P < or = 0.05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately 55% higher (P < or = 0.05) in triceps than vastus lateralis. Exercise induced (P < or = 0.05) dephosphorylation of both PDH-E1 alpha site 1 and site 2 in all three muscles, but it was more pronounced at PDH-E1 alpha site 1 in triceps than in vastus lateralis (P < or = 0.05). The increase in activity of the active form of PDH (PDHa) after 10 min of exercise was more marked in vastus lateralis ( approximately 246%) than in triceps ( approximately 160%), but when it was related to total PDH-E1 alpha protein content, no difference was evident. In conclusion, PDH protein content seems to be related to metabolic enzyme profile, rather than myosin heavy chain composition, and less PDH capacity in triceps is a likely contributing factor to higher lactate accumulation in triceps than in vastus lateralis.  相似文献   

5.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

6.
This study characterized the biochemical properties of the rat diaphragm by measuring the activities of selected citric acid cycle and glycolytic enzymes. The diaphragm was removed from 10 female Sprague-Dawley rats (180 days old) and dissected into five discrete anatomic regions: crural (region 1), left posterior costal (region 2), left anterior costal (region 3), right anterior costal (region 4), and right posterior costal (region 5). Sections were assayed for total protein concentration and the activities of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH). The SDH activity in the crural region was approximately 18% lower (P less than 0.05) than that in any costal region. Furthermore, protein concentration was significantly lower (P less than 0.05) in the crural region compared with all costal regions. In contrast, costal regions 2-5 did not significantly differ from each other in protein concentration or SDH activity. LDH activity did not differ significantly (P greater than 0.05) between regions. Finally, the LDH-to-SDH activity ratio was significantly higher (P less than 0.05) in the crural diaphragm compared with all costal regions. We conclude that the crural region of the rat diaphragm is significantly lower in oxidative capacity than all the costal regions. Investigators who use a rodent model to study diaphragmatic function and plasticity should consider the oxidative heterogeneity of the diaphragm when designing experiments.  相似文献   

7.
Whether the diaphragm retains a vasodilator reserve at maximal exercise is controversial. To address this issue, we measured respiratory and hindlimb muscle blood flows and vascular conductances using radiolabeled microspheres in rats running at their maximal attainable treadmill speed (96 +/- 5 m/min; range 71-116 m/min) and at rest while breathing either room air or 10% O(2)-8% CO(2) (balance N(2)). All hindlimb and respiratory muscle blood flows measured increased during exercise (P < 0.001), whereas increases in blood flow while breathing 10% O(2)-8% CO(2) were restricted to the diaphragm only. During exercise, muscle blood flow increased up to 18-fold above rest values, with the greatest mass specific flows (in ml. min(-1). 100 g(-1)) found in the vastus intermedius (680 +/- 44), red vastus lateralis (536 +/- 18), red gastrocnemius (565 +/- 47), and red tibialis anterior (602 +/- 44). During exercise, blood flow was higher (P < 0.05) in the costal diaphragm (395 +/- 31 ml. min(-1). 100 g(-1)) than in the crural diaphragm (286 +/- 17 ml. min(-1). 100 g(-1)). During hypoxia+hypercapnia, blood flows in both the costal and crural diaphragms (550 +/- 70 and 423 +/- 53 ml. min(-1). 100 g(-1), respectively) were elevated (P < 0.05) above those found during maximal exercise. These data demonstrate that there is a substantial functional vasodilator reserve in the rat diaphragm at maximal exercise and that hypoxia + hypercapnia-induced hyperpnea is necessary to elevate diaphragm blood flow to a level commensurate with its high oxidative capacity.  相似文献   

8.
Four selected leg muscles (gastrocnemius, soleus, vastus lateralis and intermedius) from thirty-two humans were autopsied within 25 hr of death and examined histochemically.The results of histochemical myofibrillar adenosine triphosphatase activity demonstrated that the soleus and vastus intermedius muscles have a higher proportion of slow twitch fibres (70%, 47%) than their synergists, gastrocnemius and vastus lateralis, respectively.The gastrocnemius contains about 50% slow twitch fibres and the vastus lateralis about 32%. Similar proportions of slow and fast twitch fibres have been reported for these hindlimb muscles in other mammals. Human muscles, however, differ from other mammalian muscles in that the proportion of slow and fast twitch fibres were similar in the superficial and deep regions of the muscles examined. Fast twitch oxidative glycolytic fibres in sedentary humans were observed less frequently, and they are less prominent in terms ofoxidative enzymatic activity when compared to similar fibres of several laboratory mammals studied previously.  相似文献   

9.
The distribution of motor drive to the costal and crural diaphragm and parasternal intercostal muscles was evaluated during progressive isocapnic hypoxia in anesthetized dogs. Bipolar stainless steel wire electrodes were placed unilaterally into the costal and crural portions of the diaphragm and into the parasternal intercostal muscle in the second or third intercostal space. Both peak and rate of rise of electromyographic activity of each chest wall muscle increased in curvilinear fashion in response to progressive hypoxia. Both crural and parasternal intercostal responses, however, were greater than those of the costal diaphragm. The onset of crural activation preceded that of the costal portion of the diaphragm and parasternal intercostal muscle activation. Despite differences in the degree of activation among the various chest wall muscles, the rate of increase in activation for any given muscle was linearly related to the rate of increases for the other two. This suggests that respiratory drive during progressive hypoxia increases in fixed proportion to the different chest wall inspiratory muscles. Our findings lend further support to the concept that the costal and crural diaphragm are governed by separate neural control mechanisms and, therefore, may be considered separate muscles.  相似文献   

10.
This study was undertaken to determine the effects of increased substrate availability (glycogen + plasma fatty acids) by glucocorticoids on energy metabolism during exercise to exhaustion. Female rats received a single subcutaneous injection of cortisol acetate (CA) (100 mg.kg body wt-1) 21 h before treadmill running (30.8 m/min). At the start of exercise in the CA-treated rats, plasma fatty acids and liver glycogen were increased by 40%. Glycogen levels were also increased by CA treatment in slow-twitch soleus (61%), fast-twitch white vastus (38%), and fast-twitch red vastus lateralis (85%) muscles. Exercise time to exhaustion was increased by CA treatment (114 +/- 5 vs. 95 +/- 6 min, P less than 0.05). During the exercise, total glycogen depletion was greater in the CA-treated than in the control animals, whereas estimated relative rates of carbohydrate utilization (R = 0.90) were similar. However, while running the CA-treated group consumed 11% more O2 than the controls (P less than 0.05). These results show that a single injection of glucocorticoids is capable of improving endurance. Yet the increased O2 uptake during exercise may have minimized the impact of the initial increased availability of carbohydrates and fatty acids in prolonging exercise capacity. This decreased running economy by the CA-treated runners may be secondary to alterations in energy production or utilization.  相似文献   

11.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Some controversy exists in the literature as to whether or not diaphragmatic glycogen is utilized during exercise. In this study male Sprague-Dawley rats were used to determine whether prolonged treadmill exercise would result in a significant reduction of glycogen concentration in the respiratory muscles. Untrained rats were run to exhaustion at a speed of 24 m/min, up a 10% grade. Run time averaged 48:30 min. After exercise a significant reduction in glycogen was observed in the diaphragm (43% of control), intercostals (43%), heart (39%), and plantaris (76%). In the diaphragm a significant reduction was shown in both types I and II fibers using the periodic acid-Schiff (PAS) stain for glycogen. These findings show that muscles with vastly different aerobic capacities utilize endogenous glycogen during moderately intense submaximal endurance exercise and that the costal diaphragm muscle is not an exception as has recently been suggested.  相似文献   

13.
In the present study, we measured fiber types and fiber diameters in canine respiratory muscles and examined regional variation within the diaphragm. Samples of eight diaphragm regions, internal intercostals, external intercostals, transversus abdominis, and triceps brachii were removed from eight adult mongrel dogs, frozen, and histochemically processed for standard fiber type and fiber diameter determinations. The respiratory muscles were composed of types I and IIa fibers; no IIb fibers were identified. Fiber composition differed between muscles (P less than 0.0001). Normal type I percent (+/- SE) were: diaphragm 46 +/- 2, external intercostal 85 +/- 6, internal intercostals 48 +/- 3, transversus abdominis 53 +/- 1, and triceps 33 +/- 7. The diaphragm also contained a type I subtype [6 +/- 1% (SE)] previously thought only to occur in developing muscle. Fiber composition varied between diaphragm regions (P less than 0.01). Most notably, left medial crus contained 64% type I fibers. Fiber size also varied systematically among muscles (P less than 0.025) and diaphragm regions (P less than 0.0005). External intercostal fiber diameter was largest (47-50 microns) and diaphragm was smallest (34 microns). Within diaphragm, crural fibers were larger than costal (P less than 0.05). We conclude that there are systematic differences in fiber composition and fiber diameter of the canine respiratory muscles.  相似文献   

14.
The response of respiratory gas exchanges to a 6 week high intensity training program was examined in 5 healthy males during fixed term maximal incremental treadmill exercise. Training was performed 3 d.wk-1 and consisted of a progressive series of repeated 15 sec and 30 sec maximal runs, and weight training exercises for the leg extensor muscles. Respiratory gases during the tests were continuously monitored using an on-line system. Muscle biopsy samples were obtained from the m. vastus lateralis before and after training for histochemical determination of fibre distribution based on myosin ATP-ase activity, and fibre cross-sectional area based on NADH-Tetrazolium Reductase activity. Training significantly increased the proportion of type IIa fibres (+5.9 +/- 2.0%, p less than 0.001) and decreased type I fibres (-6.3 +/- 2.0%, p less than 0.001), the distribution of type IIb fibres remained unchanged (+0.4 +/- 0.9%). Muscle cross-sectional area also showed a significant increase after training in type I (+318 +/- 215 microns 2, p less than 0.05), IIa (+652 +/- 207 microns 2, p less than 0.001) and IIb (+773 +/- 196 microns 2, p less than 0.001) fibres. During fixed term maximal incremental exercise the mean carbon dioxide output (VCO2) and mean respiratory exchange ratio (R = VCO2/VO2) were significantly increased (p less than 0.01) after training. The R-time relationship was at all times shifted to the left after training, being significantly (p less than 0.01) so over the final five min of exercise. No changes in mean exercise oxygen uptake (VO2), maximum oxygen uptake (VO2max) and maximum heart rate (FHRmax) were observed between tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Fibre types in the costal region of the diaphragm muscle of several mammalian species with widely different respiratory rates were examined microphotometrically for succinate dehydrogenase (SDH) activity. Mean activities indicated no significant (p greater than 0.05) difference between the type I and IIA fibres for any of the species examined. SDH activities in type IIB fibres were significantly lower (p less than 0.05) than either the type I or type IIA fibres in the cat, guinea pig, rat and rabbit whereas in the mouse no difference was found. The dog had no classical type 1B fibres. Analysis of the distribution of SDH activities by fibre type indicated a wide scattering of scores with no distinct separation between fibre types. Large differences in SDH activity were noted between species. Mean SDH activities were highest in the mouse and rat, intermediate in the rabbit and guinea pig and lowest in the cat and dog. These data suggest an association between respiratory rate and aerobic oxidative potential of the various fibre types in diaphragms of the species examined.  相似文献   

16.
Rat skeletal muscle triacylglycerol utilization during exhaustive swimming   总被引:1,自引:0,他引:1  
The utilization of triacylglycerol in slow oxidative, fast oxidative-glycolytic, and fast glycolytic skeletal muscle fiber types was examined in rats subjected to a prolonged exhaustive swim. Significant reductions of intramuscular triacylglycerol occurred following 2 h and 40 min of swimming in all muscles containing a predominance of slow oxidative and fast oxidative-glycolytic fibers, which possess a high capacity for free fatty acid oxidation. Triacylglycerol content in the soleus decreased by 48%, and reductions of 41, 29, and 27% were measured in the red vastus lateralis, red gastrocnemius, and plantaris muscles, respectively. In the white vastus lateralis and white gastrocnemius muscles (fast glycolytic fibers) triacylglycerol concentrations were unaffected. In all muscles the variability of intramuscular triacylglycerol measurements between animals was 20-50% and the within animal variance (right vs. left hindlimb) was similar. Analytical repeatability was approximately 10% in all muscles and significantly less than the between- and within-animal variances. It was concluded that a real biological variation exists in the triacylglycerol content of all rat skeletal muscles and that intramuscular triacylglycerol is an important energy source during prolonged exercise of moderate intensity.  相似文献   

17.
Seventeen male patients with ischaemic heart disease (IHD) and effort angina performed OBLA exercise stress tests (set to 2.0 mmol × 1–1). They had muscle biopsies from the vastus lateralis muscle the day before coronary by-pass grafting, and from the internal and external intercostal, diaphragm and gastrocnemius muscles during surgery. They had a low WOBLA (83 ± 6 W, mean ± 1 S.E.M), WOBLA corresponded to 79 ± 4% (% WOBLA) of WSL (symptom limited or maximal capacity = 111 ± 11 W). Peak blood lactate concentration averaged 2.9 mmol × 1–1. Muscle fibre composition disclosed a depressed percent slow twitch (ST or red) muscle fibres in the vastus lateralis and intercostal muscles (%ST). The diaphragm and gastrocnemius muscles had normal %ST. Intercostal muscles had elevated values for the fast twitch muscle fibre (FT) subgroup FTa indicative of endurance adaptation. The vastus lateralis, gastrocnemius and diaphragm muscles had normal muscle ubiquinone (UQ) contents, whereas the intercostals were depleted. Plasma contents of the antioxidants UQ and -tocopherol were low as compared to healthy man.The study was carried out by the Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.  相似文献   

18.
The inspiratory phase of coughs often consists of large inspired volumes and increased motor discharge to the costal diaphragm. Furthermore, diaphragm electrical activity may persist into the early expiratory portion of coughs. To examine the role of other inspiratory muscles during coughing, electromyograms (EMG) recorded from the crural diaphragm (Dcr) and parasternal intercostal (PSIC) muscles were compared to EMG of the costal diaphragm (Dco) in anesthetized cats. Tracheal or laryngeal stimulation typically produced a series of coughs, with variable increases in peak inspiratory EMGs of all three muscles. On average, peak inspiratory EMG of Dco increased to 346 +/- 60% of control (P less than 0.001), Dcr to 514 +/- 82% of control (P less than 0.0002), and PSIC to 574 +/- 61% of control (P less than 0.0005). Augmentations of Dcr and PSIC EMG were both significantly greater than of Dco EMG (P less than 0.05 and P less than 0.002, respectively). In most animals, EMG of Dco correlated significantly with EMG of Dcr and of PSIC during different size coughs. Electrical activity of all three muscles persisted into the expiratory portions of many (but not all) coughs. The duration of expiratory activity lasted on average 0.17 +/- 0.03 s for Dco, 0.25 +/- 0.06 s for Dcr, and 0.31 +/- 0.09 s for PSIC. These results suggest that multiple respiratory muscles are recruited during inspiration of coughs, and that the persistence of electrical activity into expiration of coughs is not unique to the costal diaphragm.  相似文献   

19.
The purpose of the present study was to assess the effects of bronchoconstriction on respiratory changes in length of the costal diaphragm and the parasternal intercostal muscles. Ten dogs were anesthetized with pentobarbital sodium and tracheostomized. Respiratory changes in muscle length were measured using sonomicrometry, and electromyograms were recorded with bipolar fine-wire electrodes. Administration of histamine aerosols increased pulmonary resistance from 6.4 to 14.5 cmH2O X l-1 X s, caused reductions in inspiratory and expiratory times, and decreased tidal volume. The peak and rate of rise of respiratory muscle electromyogram (EMG) activity increased significantly after histamine administration. Despite these increases, bronchoconstriction reduced diaphragm inspiratory shortening in 9 of 10 dogs and reduced intercostal muscle inspiratory shortening in 7 of 10 animals. The decreases in respiratory muscle tidal shortening were less than the reductions in tidal volume. The mean velocity of diaphragm and intercostal muscle inspiratory shortening increased after histamine administration but to a smaller extent than the rate of rise of EMG activity. This resulted in significant reductions in the ratio of respiratory muscle velocity of shortening to the rate of rise of EMG activity after bronchoconstriction for both the costal diaphragm and the parasternal intercostal muscles. Bronchoconstriction changed muscle end-expiratory length in most animals, but for the group of animals this was statistically significant only for the diaphragm. These results suggest that impairments of diaphragm and parasternal intercostal inspiratory shortening occur after bronchoconstriction; the mechanisms involved include an increased load, a shortening of inspiratory time, and for the diaphragm possibly a reduction in resting length.  相似文献   

20.
Discrepancies exist regarding the involvement of cellular inflammation and apoptosis in the muscle dysfunction of chronic obstructive pulmonary disease (COPD) patients with preserved body composition. We explored whether levels of inflammatory cells and apoptosis were increased in both respiratory and limb muscles of COPD patients without nutritional abnormalities. In the vastus lateralis, external intercostals, and diaphragms of severe and moderate COPD patients with normal body composition, and in healthy subjects, intramuscular leukocytes and macrophage levels were determined (immunohistochemistry). Muscle structure was also evaluated. In the diaphragm and vastus lateralis of severe and moderate COPD patients and controls, apoptotic nuclei were explored using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, electron microscopy, and caspase-3 expression. In COPD patients compared with controls, diaphragm and intercostal levels of inflammatory cells were extremely low and not significantly different. However, in the vastus lateralis of the severe patients, inflammatory cell counts, although also very low, were significantly greater. In those patients, TUNEL-positive nuclei levels were also significantly greater in diaphragms and vastus lateralis. A significant inverse relationship was found between quadriceps TUNEL-positive nuclei levels and muscle force. Ultrastructural apoptotic nuclei revealed no differences in respiratory or limb muscles between COPD patients and controls. Muscle caspase-3 expression did not differ between patients and controls. In severe COPD patients with preserved body composition, while increased apoptotic nuclei seems to be a contributor to their muscle dysfunction, cellular inflammation does not. The increased numbers of TUNEL-positive nuclei in their muscles suggest that they may also be exposed to a continuous repair/remodeling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号