首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of stenbolone acetate (17 beta-acetoxy-2-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. Nine metabolites were detected in urine either as glucuronic or sulfuric acid aglycones after oral administration of a single 50 mg dose to a male volunteer. Stenbolone, the parent compound, was detected for more than 120 h after administration and its cumulative excretion accounted for 6.6% of the ingested dose. Most of the stenbolone acetate metabolites were isolated from the glucuronic acid fraction, namely: stenbolone, 3 alpha-hydroxy-2-methyl-5 alpha-androst-1-en- 17-one, 3 alpha-hydroxy-2 xi-methyl-5 alpha-androst-17-one; 3 isomers of 3 xi, 16 xi-dihydroxy-2-methyl-5 alpha-androst-1-en-17-one; 16 alpha and 16 beta-hydroxy-2-methyl-5 alpha-androst-1-ene-3, 17-dione; and 16 xi, 17 beta-dihydroxy-2-methyl-5 alpha-androst-1-en-3-one. Only isomeric metabolites bearing a 16 alpha or a 16 beta-hydroxyl group were detected in the sulfate fraction. Interestingly, no metabolite was detected in the unconjugated steroid fraction. The steroids identities were assigned on the basis of their TMS ether, TMS enol-TMS ether, MO-TMS and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. Data indicated that stenbolone acetate was metabolized into several compounds resulting from oxidation of the 17 beta-hydroxyl group and/or reduction of A-ring delta-1 and/or 3-keto functions with or without hydroxylation at the C16 position. Finally, comparison of stenbolone acetate urinary metabolites with that of methenolone acetate shows similar biotransformation pathways for both delta-1-3-keto anabolic steroids. This indicates that the position of the methyl group at the C1 or C2 position in these steroids has little effect on their major biotransformation routes in human, to the exception that stenbolone cannot give rise to metabolites bearing a 2-methylene group since its 2-methyl group cannot isomerize into a 2-methylene function through enolization of the 3-keto group as previously observed for methenolone.  相似文献   

2.
New metabolites of mesterolone, methenolone and stenbolone bearing a C18 hydroxyl group were isolated from the steroid glucuronide fraction of urine specimens collected after administration of single 50 mg doses of these steroids to human subjects. Mesterolone gave rise to four metabolites which were identified by gas chromatography/mass spectrometry as 18-hydroxy-1 alpha-methyl-5 alpha-androstan-3,17-dione 1, 3 alpha,18-dihydroxy-1 alpha-methyl-5 alpha-androstan-17-one 2, 3 beta,18-dihydroxy-1-alpha-methyl-5 alpha-androstan-17-one 3 and 3 alpha,6 xi,18-trihydroxy-1 alpha-methyl-5 alpha-androstan-17-one 4. These data suggest that mesterolone itself was not hydroxylated at C18, but rather 1 alpha-methyl-5 alpha-androstan-3,17-dione, an intermediate metabolite which results from oxidation of mesterolone 17-hydroxyl group. In addition to hydroxylation at C18, reduction of the 3-keto group and further hydroxylation at C6 were other reactions that led to the formation of these metabolites. It is of interest to note that in the case of both methenolone and stenbolone, only one 18-hydroxylated urinary metabolite namely 18-hydroxy-1-methyl-5 alpha-androst-1-ene-3,17-dione 5 and 18-hydroxy-1-methyl-5 alpha-androst-1-ene-3,17-dione 6 were both detected in post-administration urine specimens. These data indicate that the presence of a methyl group at the C1 or C2 positions in the steroids studied is a structural feature that seems to favor interaction of hepatic 18-hydroxylases with these steroids. These data provide further evidence that 18-hydroxylation of endogenous steroids can also occur in extra-adrenal sites in man.  相似文献   

3.
A highly accurate method has been developed for detection and quantitation of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major urinary metabolite of methenolone acetate (Primobolan) in man. Unlabelled as well as 2H-labelled 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one were synthesized from 1-methylen-5 alpha-androstane-3,17-dione. A fixed amount of the internal standard was added to a fixed amount of urine and the mixture was treated with Helix pomatia for 24 h. After extraction and purification by t.l.c., the mixture was converted into methoxime--trimethylsilyl derivative and analyzed by combined GC--MS. Unlabelled 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one could be quantitated from the ratio between the tracings of the ions at m/z 372 and m/z 375 (corresponding to the M-31 ions). In alternative procedures, the ions at m/z 403 and m/z 406 (molecular ions) as well as m/z 282 and m/z 285 (M-90-31 ions) could be used. Under the conditions employed, the metabolite could be identified and quantitated in concentrations exceeding 10 ng/ml. Significant amounts of the metabolite could be detected in urine during 5 days after a single oral ingestion of 10 mg of Primobolan. The method has been successfully used for analyses of urine samples obtained from athletes involved in competition.  相似文献   

4.
The epididymis of adult rats metabolizes 3H 5alpha-androstane-3alpah,17beta-diol (3alpha-diol) by experiments in vitro. After incubation of tissue slices at 37 degrees C for 2 hours, 2% of the radioactivity was found in the water-soluble fraction whereas 98% was found to be ether soluble (free steroids). Further investigation of the free steroids showed the following to be present: 3alpha-diol 39.9%, DHT (17beta-hydroxy-5alpha-androstan-3-one) 33.7%, androsterone (3alpha-hydroxy-5alpha-androstan-17-one) 9.2%, 3beta-diol (5alpha-androstane-3beta,17beta-diol) 2.6%, 5alpha-A-dione (5alpha-androstan-3,17-dione) 1.1%, delta 16-3alpha-ol (5alpha-androst-16-en-3alpha-ol) 1.0%, delta16-3beta-ol (5alpha-androst-16-en-3beta-ol) 2.6%, delta 16-3-one (5alpha-androst-16-en-3-one) 2.9%, and polar compounds 3.3%. When segments of the epididymis (caput and cauda) were incubated in the same way, qualitatively similar metabolites were formed but a greater amount of 3alpha-diol was metabolized by the cauda epididymis. This increase was mainly accounted for by an increased formation of delta 16 compounds (14.3% in cauda, 4.3% in caput). This is most probably due to the presence of larger numbers of mature spermatozoa, which, as we have previously shown, form delta16 steroids from 3alpha-diol and DHT (5).  相似文献   

5.
Zhang H  Qiu Z 《Steroids》2006,71(13-14):1088-1090
5alpha-Androst-1-ene-3,17-dione (5) as a prodrug of 1-testosterone (4) was prepared in four steps from 17beta-Acetoxy-5alpha-androstan-3-one (stanolone acetate) (1) in high yield. Thus, stanolone acetate (1) was brominated in the presence of hydrogen chloride in acetic acid to give 17beta-acetoxy-2-bromo-5alpha-androstan-3-one (2), which underwent dehydrobromination using lithium carbonate as base with lithium bromide as an additive to give 17beta-acetoxy-5alpha-androst-1-en-3-one (3) in almost quantitative yield with 97% of purity. Compound (3) was hydrolyzed with sodium hydroxide to give 17beta-hydroxy-5alpha-androst-1-en-3-one (4,1-testosterone), which was oxidized with chromium trioxide to afford 5alpha-androst-1-ene-3,17-dione (5). The overall yield of 5 was 78.2% with purity of 99%. In this method, the formation of 4-ene was diminished when 1-ene was introduced, and its mechanism was also discussed.  相似文献   

6.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

7.
T K Kwan  C Orengo  D B Gower 《FEBS letters》1985,183(2):359-364
The biosynthesis of testosterone and 4-androstene-3,17-dione and some 16-androstenes has been studied in homogenates or subcellular fractions of testes from 3-week-old Landrace piglets. Pregnenolone was converted into 5,16-androstadien-3 beta-ol, 4,16-androstadien-3-one, 5 alpha-androst-16-en-3-one and 5 alpha-androst-16-en-3 alpha- and 3 beta-ols, but the quantities were some 50 times less than those formed in the mature boar testis. Androgens were also formed in the microsomal fractions but the quantities of 4-androstene-3,17-dione (from side-chain cleavage of 17-hydroxyprogesterone) and of testosterone (from reduction of 4-androstene-3,17-dione) were 50-70 times lower than in the adult animal. The kinetic parameters and cofactor preference of the 3 alpha- and 3 beta-hydroxysteroid dehydrogenases were determined in the cytosolic, microsomal and mitochondrial fractions of neonatal porcine testes.  相似文献   

8.
Biotransformation of 3beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C(22) phenolic acid intermediates and complete removal of the C(17) side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C(17)-C(20) bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

9.
The retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione were good substrates for cortisone reductase in the presence of NADH, and the products corresponded to the respective 3beta-hydroxy compounds, in which the 3beta-hydroxyl group is axial and the absolute configuration is 3S. The analogous natural steroids 17beta-hydroxy-5beta,9alpha,10beta-androstan-3-one and 5beta,9alpha,10beta-androstane-3,17-dione were very poor substrates, and gave the corresponding 3alpha(equatorial,3R)-hydroxy compounds, and, in the latter case, also an appreciable amount of 3beta(axial, 3S)-hydroxy-5beta,9alpha,10beta-androstan-17-one. The natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione were better substrates than the retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one, but were not such good substrates as the retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione. Unlike these retro steroid 5beta,9beta,10alpha-androstan-3-ones, the natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione gave the corresponding 3alpha(axial,3R)-hydroxy compounds. The retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one was not a good substrate, and the product of reaction corresponded to the 3alpha(axial,3R)-hydroxy compound. The nature of substrate recognition by this enzyme is discussed in the light of these structure-activity relationships.  相似文献   

10.
4-Hydroxyandrost-4-ene-3,17-dione is a second generation, irreversible aromatase inhibitor and commonly used as anti breast cancer medication for postmenopausal women. 4-Hydroxytestosterone is advertised as anabolic steroid and does not have any therapeutic indication. Both substances are prohibited in sports by the World Anti-Doping Agency, and, due to a considerable increase of structurally related steroids with anabolic effects offered via the internet, the metabolism of two representative candidates was investigated. Excretion studies were conducted with oral applications of 100mg of 4-hydroxyandrostenedione or 200mg of 4-hydroxytestosterone to healthy male volunteers. Urine samples were analyzed for metabolic products using conventional gas chromatography-mass spectrometry approaches, and the identification of urinary metabolites was based on reference substances, which were synthesized and structurally characterized by nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. Identified phase-I as well as phase-II metabolites were identical for both substances. Regarding phase-I metabolism 4-hydroxyandrostenedione (1) and its reduction products 3beta-hydroxy-5alpha-androstane-4,17-dione (2) and 3alpha-hydroxy-5beta-androstane-4,17-dione (3) were detected. Further reductive conversion led to all possible isomers of 3xi,4xi-dihydroxy-5xi-androstan-17-one (4, 6-11) except 3alpha,4alpha-dihydroxy-5beta-androstan-17-one (5). Out of the 17beta-hydroxylated analogs 4-hydroxytestosterone (18), 3beta,17beta-dihydroxy-5alpha-androstan-4-one (19), 3alpha,17beta-dihydroxy-5beta-androstan-4-one (20), 5alpha-androstane-3beta,4beta,17beta-triol (21), 5alpha-androstane-3alpha,4beta,17beta-triol (26) and 5alpha-androstane-3alpha,4alpha,17beta-triol (28) were identified in the post administration urine specimens. Furthermore 4-hydroxyandrosta-4,6-diene-3,17-dione (29) and 4-hydroxyandrosta-1,4-diene-3,17-dione (30) were determined as oxidation products. Conjugation was diverse and included glucuronidation and sulfatation.  相似文献   

11.
J C Kapur  A F Marx  J Verweij 《Steroids》1988,52(3):181-186
9 alpha-Hydroxyandrost-4-ene-3,17-dione 1, when allowed to react with dipotassium acetylide in tetrahydrofuran, resulted, after chromatographic separation, in 4-methyl-19-norandrosta-4,9-diene-1,17-dione 2, 4 xi-methyl-19-norandrosta-5(10),9(11)-diene-1,17-dione 3, 4-methyl-17 alpha-ethynyl-17 beta-hydroxy-19-norandrosta-4,9-dien-1-one 4, 4 xi-methyl-17 alpha-ethynyl-17 beta-hydroxy-19-norandrosta-5(10),9(11)-dien- 1-one 5, and 17 alpha-ethynyl-17 beta-hydroxy-9,10-secoandrost-4-ene-3,9-dione 6. Selective protection of delta 4-3-ketone of 9 alpha-hydroxyandrost-4-ene-3,17-dione 1 as its dienol methyl ether 7, and subsequent reaction with lithium acetylide-ethylenediamine followed by acidic hydrolysis, afforded 9 alpha,17 beta-dihydroxy-17 alpha- ethynylandrost-4-en-3-one 8.  相似文献   

12.
The metabolism of a mixture of [4-14C]- and [7 beta-2H]testosterone by the hepatic microsomal fraction from adult femal C57BL/6J mice has been investigated. The following metabolites were identified by their mass spectra and by their retention times on gas chromatography on one or two phases: 1epsilon-, 2beta-, 6alpha-, 6beta-, 7alpha-, 15alpha-, 15beta-, 16alpha- and 16beta-hydroxytestosterone; 6alpha-, 6beta- and 7alpha-hydroxy-4-androstene-3,17-dione; and 4-androstene-3,17-dione. A compound tentatively identified as 6- or 7-oxotestosterone was also isolated. 17beta-Hydroxy-4,6-androstadien-3-one, 17beta-hydroxy-1,4-androstadien-3-one and 4,6-androstadiene-3,17-dione were identified but are considered to arise non-enzymatically from 7alpha-hydroxytestosterone, 1epsilon-hydroxytestosterone and 7alpha-hydroxy-4-androstene-3,17-dione, respectively.  相似文献   

13.
The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.  相似文献   

14.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

15.
Catharanthus roseus (L.) G. Don cell suspension cultures were used to transform 3b-hydroxyandrost-5-en-17-one, the products were isolated by chromatographic methods. Their structures were established by means of NMR and MS spectral analyses. Nine metabolites were respectively elucidated as: androst-4-ene-3,17-dione (Ⅰ), 6a-hydroxyandrost-4-ene-3,17-dione (Ⅱ), 6a,17b-dihydroxyandrost-4-en-3-one (Ⅲ), 6b-hydroxyandrost-4-ene-3,17-dione (Ⅳ), 17b-hydroxyandrost-4-en-3-one (Ⅴ), 15a,17b-dihydroxyandrost-4-en-3-one (Ⅵ), 15b,17b-dihydroxyandrost-4-en-3-one (Ⅶ), 14a-hydroxyandrost-4-ene-3,17-dione (Ⅷ), 17b-hydroxyandrost-4-ene-3,16-dione (Ⅸ). It is the first time to obtain the above compounds by biotransformation with Catharanthus roseus cell cultures.  相似文献   

16.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

17.
Spermatozoa from bovine ejaculates and cauda epiditymidis were incubated with either tritiated 17 beta-hydroxy-5 alpha-androstane-3-one (DHT) or 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol). Examination of the medium incubations demonstrated metabolic conversion of both DHT and 3 alpha-diol when these steriods were incubated with ejaculated sperm. In addition to this interconversion, the following metabolities were identified: 5 alpha-androstane-3 beta, 17 beta-diol, (3 beta-diol), androsterone and 5 alpha-androstane-3, 17-dione (5 alpha-A-dione). Incubations with cauda spermatozoa showed similar metabolic patterns. Androgen binding was exhibited by both sperm types. Examination of the washed cauda sperm pellet, following incubations with 3 alpha-diol showed that the incubated steroid was the most abundantly bound. DHT and 5 alpha-androst-16-en-3 alpha-ol (delta 16-3 alpha-ol1 were also detected. The major part of the radioactivity bound in the sperm pellet was identified as DHT when this steroid was used as the substrate; the remaining radioactivity consisted of 3 alpha-diol and delta 16-3 alpha-ol. Investigations of ejaculated sperm pellets gave similar results apart from the additional identification of 5 alpha-androst-16-en-3 one (delta 16-3-one) and 5 alpha-androst-16-en-3 beta-ol (delta 16-3 beta-ol (delta 16-3 beta-ol).  相似文献   

18.
1. The metabolism of [4-(14)C]pregnenolone in vitro by boar adrenocortical and testis tissue has been studied. 2. Boar testis tissue formed three labelled Delta(16)-steroids, 5alpha-androst-16-en-3alpha-ol, 5alpha-androst-16-en-3beta-ol and androsta-4,16-dien-3-one. In adrenal tissue very much smaller yields of the same metabolites were obtained. 3. Both tissues produced labelled progesterone, androst-4-ene-3,17-dione and testosterone in varying quantities. The amount of progesterone was about 120 times greater in the adrenal tissue. In testis tissue dehydroepiandrosterone was found only in small quantity. 4. A pathway is suggested for the biosynthesis of Delta(16)-steroids from pregnenolone in boar testis tissue. The possibility that progesterone may be an intermediate is discussed.  相似文献   

19.
The metabolism of [4-14C]progesterone and [4-14C]testosterone by slices of the nasal mucosa from rats was studied. As shown by gas chromatography-mass spectrometry there was a preferential formation of reduced progesterone-metabolites (5 alpha-pregnane-3,20-dione, 3 alpha- and 3 beta-hydroxy-5 alpha-pregnane-20-one, 20 alpha- and 20 beta-hydroxypregn-4-en-3-one, 2 alpha,3 alpha-dihydroxy-5 alpha-pregnane-20-one, 3 alpha,16 alpha-dihydroxy-5 alpha-pregnane-20-one) and reduced testosterone-metabolites (4-androstene-3,17-dione, 5 alpha-dihydrotestosterone, 3 alpha-hydroxy-5 alpha-androstane-17-one, and 5 alpha-androstane-3 alpha, 17 beta-diol, 2 alpha-hydroxy-5 alpha-dihydrotestosterone, 5 alpha-androstane-2 alpha,3 alpha, 17 beta-triol) indicating the presence of 5 alpha-reductase, 3 alpha-, 3 beta-, 17 beta-, 20 alpha- and 20 beta-hydroxysteroid oxidoreductase activities in this tissue. Progesterone-metabolites hydroxylated at positions 2 alpha, 6 alpha, 6 beta, 15 alpha and 16 alpha and testosterone-metabolites hydroxylated at positions 1 beta, 2 alpha, 6 beta, 15 beta and 16 alpha were also identified, indicating the presence of several steroid hydroxylases in the nasal mucosa. Autoradiography of the nasal region of rats injected with [4-14C]progesterone or [4-14C]testosterone showed a selective localization of radioactivity in the mucosa covering the olfactory region of the nasal cavity.  相似文献   

20.
Two species of Penicillium--P. chrysogenum and P. crustosum--were cultured in presence of [3H]testosterone as a substrate. Both species were shown to reduce the 4,5-double bond in testosterone to give dihydrotestosterone (DHT). The steroids produced were 5alpha-dihydrotestosterone, DHT, 3alpha-hydroxy-5beta-androstan-17-one, 3alpha-hydroy-5alpha-androstan-17-one, 4-androstene-3,17-dione, and 5alpha-androstane-3,17-dione. These products implicate the presence of the 5alpha-reductase, with maximal activity at pH 6 and 8, in both species of Penicillium. The presence of DHT in the growth medium and not in the mycelium suggests that DHT is excreted into the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号