首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical floodplains are one of the most productive ecosystems on earth. Studies on floodplain productivity have primarily focused on trees and macrophytes, rather than algae, due to their greater biomass. However, epiphyton—algae and bacteria attached to the submerged portion of aquatic macrophytes—is a major source of energy in many tropical floodplains. Epiphyton productivity rates are unknown for most tropical floodplain wetlands, and spatial variability is not well understood. In this study, we measured primary productivity of epiphyton in Kakadu National Park in northern Australia. We estimated the relative contribution of epiphyton to aquatic production (epiphyton, + phytoplankton + macrophytes). We sampled sites dominated by different macrophyte structural types: vertical emerging grasses, horizontal emerging grasses, submerged macrophytes, and macrophytes with floating leaves. Epiphyton productivity was highly influenced by the structural type of the macrophyte. Highest potential productivity per weight was measured from epiphyton growing on macrophytes with floating leaves and horizontal grasses (1.52 ± 0.53 and 1.82 ± 0.61 mgC/dw g epiphyton/h, respectively) and lowest in submerged macrophytes and vertical grasses (0.57 ± 0.26 and 0.66 ± 0.47 mgC/dw g epiphyton/h, respectively). When considering the areal biomass of the macrophyte and the amount of epiphyton attached, epiphyton on horizontal grasses and submerged macrophytes had productivity values approximately ten times higher (45–219 mgC/m2/d) compared to those on vertical grasses and macrophytes with floating leaves (2–18 mgC/m2/d). Epiphyton contributed between 2 to 13 percent to the aquatic production of these tropical floodplain wetlands.  相似文献   

2.
The photosynthetic activity of different algal communities at the outer edge of an Equisetum fluviatile L. stand in an oligotrophic lake (Pääjärvi, in southern Finland) was investigated. Production by the algal communities was measured simultaneously using a modified 14C-method, and the results were related to the volume of algae and the available irradiance. The relative production rate (P/B quotient) of phytoplankton was ca. 3 × that of epiphyton and ca. 20 × that of epipelon. Epiphyton productivity remained almost constant although the algal volume varied greatly, suggesting that the surface layer of the algal community was mainly responsible for the photosynthetic activity. In the littoral area (at 1 m depth) primary production/m2 of lake surface by phytoplankton, epiphyton and epipelon was similar but in the littoriprofundal area (2–4 m) phytoplankton production was twice that of epipelon. Primary productivity of epiphyton and epipelon/m2 of substratum was about equal to phytoplankton productivity/m3 of water at the same irradiance. This relation provided a means of estimating the relative contributions of the different algal communities to the total algal production in the lake.  相似文献   

3.
Cuticular membranes (CM) were isolated enzymatically from leaves of amphibious and submerged plants, and the oxygen permeability of aerial and aquatic CMs was compared using a specially constructed oxygen electrode. Their thicknesses were estimated from transmission electron micrographs of intact leaves. When dry CMs were moistened, the permeability of typical aerial CMs changed differently from that of typical aquatic CMs during the desiccation, apparently reflecting different internal structures. The cuticle thickness was mostly < 100 nm, and the range of permeance values was 5–143 × 10?6 m s?1, corresponding to resistance values of 7–210 × 103 s m?1. The resistance of an aerial CM was always higher than that of an aquatic one from the same species. Only the aquatic CMs showed a weak proportionality between resistance and thickness. The relation between resistance and thickness varied from aquatic to aerial CMs in a species specific way.  相似文献   

4.
  • 1 The effects of epiphyton grazing and nutrient recycling by the freshwater snail Planorbis planorbis on the growth of the macrophyte Ceratophyllum demersum were examined in laboratory experiments.
  • 2 Ceratophyllum plants grown in the presence of snails, or in water chemically conditioned by snails, were significantly longer, had more healthy nodes of leaves, and more growing tips than Ceratophyllum plants grown in isolation. There were no significant differences between the growth of plants that were grazed by snails, and those plants which received water chemically conditioned by snails.
  • 3 Adult P. planorbis released 3.74 × 10?4μg phosphate, 23.9 × 10?4μg nitrate, 4.38 × 10?4μg ammonia, and 0.79 × 10?4μg of urea mg?1 wet weight of snail h?1. Measurements of these chemicals in the experimental systems suggested that ammonia was an important nutrient in stimulating the growth of Ceratophyllum.
  • 4 Removal of epiphyton by grazing snails significantly prolonged the life of individual Ceratophyllum leaves compared to ungrazed leaves.
  相似文献   

5.
A complete protocol for large-scale propagation of Dendrocalamus strictus Nees by somatic embryogenesis has been developed. Seeds cultured on agar-solidified Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D; 3×10–5 m) produced embryogenic callus from proliferation of the embryo. Somatic embryos formed in vitro multiplied rapidly (two- to five fold every 5 weeks) on semi-solid MS medium containing 2,4-D (1×10–5 m), kinetin (Kn) (5×10–6 m), 1-indolebutyric acid (IBA) (2×10–6 m) and soluble polyvinylpyrrolidone (PVP) (250 mg l–1), or MS with 2,4-D (1×10–5 m), 6-benzylaminopurine (BAP) (1×10–5 m), and soluble PVP (250 mg l–1). Upon transfer to MS containing 1-naphthaleneacetic acid (NAA) (5×10–6 m), Kn (5×10–6 m) and soluble PVP (250 mg l–1), the dark-green embryos developed into healthy plantlets. Unrooted shoots, if any, obtained on the multiplication media were rooted on MS major salts reduced to half strength supplemented with NAA (3×10–6 m) and IBA (2.5×10–6 m). The rooted plants were successfully transferred to soil in polythene bags with over 80% survival. Using this methodology, more than 100,000 plants have been produced. Received: 16 April 1998 / Revision received: 25 September 1998 / Accepted: 10 October 1998  相似文献   

6.
Epiphyton might have distinctive influence on the morphology of substrate macrophyte. In this article, we evaluate the influence of epiphyton on the morphological characteristics of their substrate submerged macrophyte, Potamogeton perfoliatus under two light intensities. The experiment was carried out for a period of 84 days in 12 glass aquaria under laboratory conditions. It was based on a 2 × 2 factorial design with epiphyton status (present or absent) and light intensity (200 or 80 μE m−2 s−1). Both epiphyton and light intensity had significant effects on the morphology and biomass allocation of the experimental plants. The average number of leaves, total length of newly recruited shoots and diameter of stems were greater in the epiphyton-free control plants than in the epiphyton-colonized plants under low light conditions. The plants with epiphyton allocated more biomass in their rhizomes and roots (% relative to total biomass basis) when compared to the control plants in both light intensities. There were also significant epiphyton–light interactions. The control plants under low light intensity showed higher internodal elongation in their main shoots when compared to the plants under high light intensity as an adaptation mechanism. Whereas the plants with epiphyton did not show such an adaptation. The new shoots of the control plants under low light intensity did not show any internodal elongation as observed in the main shoots. Furthermore, the length of the leaves of main shoots was larger in control plants with epiphyton and high light intensity than in plants with epiphyton and low light intensity, but such a variation was absent in the new shoots. We conclude that the long-term colonization by epiphyton and their shading effects induced the observed morphological changes in plants.  相似文献   

7.
In July-August 2009, the abundance of picophytoplankton (Pico) in the Velikaya Salma strait varied from 3.4 × 106 to 19.4 × 106 cells/L, while its biomass (B) was 0.8–3.3 mg C/m3. In August 2010, Pico abundance was significantly higher (up to 216 × 106 cells/L and 36.8 mg C/m3). Pico consisted mainly of cyanobacteria. It constituted 13 (2009) to 28% (2010) of the total phytoplankton biomass. In April 2010, Pico numbers varied from 0.1 × 106 to 0.22 × 106 cells/L and its biomass was 0.05–0.28 mg C/m3. Picoeukaryotes were predominant. Pico constituted not more than 2.7% of the phytoplankton biomass. In the ice column, the integrated Pico abundance was 430 × 106 cells/m2 and the integrated biomass was 365 μg C/m2.  相似文献   

8.
1. The microbial metabolism of organic matter in rivers has received little study compared with that of small streams. Therefore, we investigated the rate and location of bacterial production in a sixth‐order lowland river (Spree, Germany). To estimate the contribution of various habitats (sediments, epiphyton, and the pelagic zone) to total bacterial production, we quantified the contribution of these habitats to areal production by bacteria. 2. Large areas of the river bottom were characterized by loose and shifting sands of relatively homogenous particle size distribution. Aquatic macrophytes grew on 40% of the river bottom. Leaf areas of 2.8 m2 m?2 river bottom were found in a 6.6 km river stretch. 3. The epiphyton supported a bacterial production of 5–58 ng C cm?2 h?1. Bacterial production in the pelagic zone was 0.9–3.9 μg C L?1 h?1, and abundance was 4.0–7.8 × 109 cells L?1. Bacterial production in the uppermost 2 cm of sediments ranged from 1 to 8 μg C cm?3 h?1, and abundance from 0.84 to 6.7 × 109 cells cm?3. Bacteria were larger and more active in sediments than in the pelagic zone. 4. In spite of relatively low macrophyte abundance, areal production by bacteria in the pelagic zone was only slightly higher than in the epiphyton. Bacterial biomass in the uppermost 2 cm of sediments exceeded pelagic biomass by factors of 6–22, and sedimentary bacterial production was 17–35 times higher than in the overlying water column. 5. On a square meter basis, total bacterial production in the Spree was clearly higher than primary productivity. Thus, the lowland river Spree is a heterotrophic system with benthic processes dominating. Therefore, sedimentary and epiphytic bacterial productivity form important components of ecosystem carbon metabolism in rivers and shallow lakes. 6. The sediments are focal sites of microbial degradation of organic carbon in a sand‐bottomed lowland river. The presence of a lowland river section within a river continuum probably greatly changes the geochemical fluxes within the river network. This implies that current concepts of longitudinal biogeochemical relationships within river systems have to be revised.  相似文献   

9.
The behavior of radiocesium (137Cs) in aquatic plants (five species) and algae (three genera) grown in either a river (one sampling point) or pond (four sampling points) in the vicinity of the Fukushima Daiichi nuclear power plant was investigated. The 137Cs concentration of <0.45-μm fractions of water taken from the river and ponds was between 5.01 × 10?1 and 2.98 Bq/L, while that of sediment was between 4.85 × 103 and 5.72 × 104 Bq/kg dry weight. The ratio of 137Cs concentration of sediment/water in ponds was ~104. The sediment-to-plant transfer factor (TF) [(137Cs concentration Bq/kg dry weightplant) × (137Cs concentration Bq/kg dry weightsediment)?1] was also measured. For aquatic plants, the highest value was 5.55 for Potamogeton crispus from the river, while the lowest was 3.34 × 10?2 for P. distinctus from a pond. There were significant differences in values between aquatic plants belonging to the same genus. The water-to-plant TF [(137Cs concentration Bq/kg dry weightplant) × (137Cs concentration Bq/Lwater)?1] of filamentous algae (Spirogyra sp.) and cyanobacteria (coexisting Anabaena sp. and Microcystis sp.) were 2.39 × 103 and 1.26 × 103, respectively. The 137Cs concentration of cyanobacteria in pond water was 4.87 × 10?1 Bq/L, which was the same order of magnitude as the 137Cs concentration of pond water. Enrichment of 137Cs in cyanobacteria was not observed.  相似文献   

10.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

11.
Stock plants of pea (Pisum sativum L. cv. Alaska) were grown at different controlled levels of irradiance (4, 16 or 38 W m?2) for 11 days from sowing. Morphactin (CFM, methyl-2-chloro-9-hydroxy-fluorene-9-carboxylate) was applied to the apex of the stock plants 3 days before cuttings were excised. The cuttings were rooted at 16 W m?2. High levels of morphactin (>5 × 10?3 mg l?1) inhibited root formation in the cuttings. Low concentrations of CFM (5 × 10?5 mg l?1) promoted the formation of adventitious roots in cuttings from plants grown at all three levels of irradiance, with the most pronounced effect in cuttings from 4 W m?2. Measurements of ethylene evolution by CFM-treated plants 3 days after application, revealed a stimulatory effect on ethylene production by high CFM concentrations.  相似文献   

12.
The effects of benzyladenine (BAP), kinetin (KIN), zeatin (ZEA), isopentenyladenine (2iP), and thidiazuron (TDZ) were studied on in vitro growth of rudimentary embryos of Ilex paraguariensis St. Hil. Heart stage zygotic embryos were removed from seeds of immature, light green fruits and cultured aseptically on quarter-strength Murashige and Skoog medium containing 3% sucrose, 0.65% agar, and supplemented with or without three concentrations of BAP, KIN, ZEA, 2iP, or TDZ. Cultures were incubated in darkness at 27 ± 2°C. Media containing 4.4 × 10−6 m BAP, 4.6 × 10−6 m KIN, or 4.9 × 10−6 m 2iP were totally ineffective in inducing embryo growth after culture for 28 days. However, lower concentrations of these compounds (4.4 × 10−8 m BAP, 4.6 × 10−8 m KIN, 4.5 × 10−8 m ZEA, or 4.9 × 10−8 m 2iP) promoted embryo growth. TDZ at 9.9 × 10−9 m, 9.9 × 10−8 m, or 9.9 × 10−7 m induced embryo growth at similar rates. The maximum percentage of embryos converted to seedlings was achieved when the medium was supplemented with 4.5 × 10−7 m ZEA. Received August 1, 1997; accepted February 19, 1998  相似文献   

13.
Analysis by electrophoresis in polyacrylamide gels, followed by silver staining, of dsRNA extracted from many samples of raspberry leaves infected with raspberry leaf mottle virus (RLMV) and/or raspberry leaf spot virus (RLSV) failed to detect reliably any significant quantities of dsRNA species in excess of 1·0 × 106mol. wt. This contrasts with results reported from Canada where three dsRNA species of estimated mol. wt 2·6 × 1061·6 × 106and 1·1 × 106were consistently associated with infection with RLSV but none were associated with RLMV. However, in Scotland, four dsRNA species of estimated mol. wt 2·4 × 1061·6 × 1060·7 × 106and 0·3 × 106were detected in raspberry infected with apple mosaic ilarvirus. These results suggest that the dsRNA species reported from Canada are not those of RLSV but are probably those of a second virus, possibly an ilarvirus, which occurs together with RLSV and/or induces similar symptoms. A few samples from plants infected with RLMV and RLSV contained very small amounts of two dsRNA species of estimated mol. wt 4·7 × 106and 4·5 × 106. It is not known whether these species are those of RLMV and RLSV.  相似文献   

14.
Macrophytes play a key role in stabilizing clear‐water conditions in shallow freshwater ecosystems. Their populations are maintained by a balance between plant grazing and plant growth. As a freshwater snail commonly found in shallow lakes, Radix swinhoei can affect the growth of submerged macrophytes by removing epiphyton from the surface of aquatic plants and by grazing directly on macrophyte organs. Thus, we conducted a long‐term (11‐month) experiment to explore the effects of snail density on macrophytes with distinctive structures in an outdoor clear‐water mesocosm system (with relatively low total nitrogen (TN, 0.66 ± 0.27 mg/L) and total phosphorus (TP, 36 ± 20 μg/L) and a phytoplankton chlorophyll a (Chla) range of 14.8 ± 4.9 μg/L) based on two different snail densities (low and high) and four macrophyte species treatments (Myriophyllum spicatum, Potamogeton wrightii, P. crispus, and P. oxyphyllus). In the high‐density treatment, snail biomass and abundance (36.5 ± 16.5 g/m2 and 169 ± 92 ind/m2, respectively) were approximately twice that observed in the low‐density treatment, resulting in lower total and aboveground biomass and ramet number in the macrophytes. In addition, plant height and plant volume inhabited (PVI) showed species‐specific responses to snail densities, that is, the height of P. oxyphyllus and PVI of M. spicatum were both higher under low‐density treatment. Thus, compared with low‐density treatment, the inhibitory effects of long‐term high snail density on macrophytes by direct feeding may be greater than the positive effects resulting from epiphyton clearance when under clear‐water conditions with low epiphyton biomass. Thus, under clear‐water conditions, the growth and community composition of submerged macrophytes could be potentially modified by the manual addition of invertebrates (i.e., snails) to lakes if the inhibitory effects from predatory fish are minor.  相似文献   

15.
Increased production and use of nanomaterials can lead to new types of pollution of the environment, including aquatic ecosystems. Pollution of the aqueous environment with nanoparticles can be a new type of pollution of the environment. This requires a more detailed study of the biological effects during exposure of nanoparticles on aquatic organisms. The interactions of gold nanoparticles (Au) with aquatic macrophytes Ceratophyllum demersum have been studied. Aquatic microcosms with these plants were used. Gold nanoparticles (Au) were added to the aqueous medium of C. demersum macrophyte containing microcosms. The state of the plants was then analyzed. Phytotoxicity of Au nanoparticles for aquatic macrophytes was shown for the first time. A new method of phytotoxicity detection was suggested and successfully approved. Phytotoxicity at a concentration of Au (in the form of nanoparticles) of 6 × 10?6 M-1.8 × 10?5 M was shown.  相似文献   

16.
The viral and bacterioplankton communities of the Barents Sea were investigated using a combination of methods of electron and epifluorescence microscopy for the first time. The quantitative composition of the communities and the nature of their interactions were also determined. Our study showed that during the summer the abundance and biomass of bacterioplankton reached 0.4–4.0 × 106 cells/mL and 25.09–84.21 mg/m3 in offshore waters and 0.4–1.8 × 106 cells/mL and 19.63–100.19 mg/m3 in coastal waters, respectively. In both regions, the number of viruses (1.7–35.8 × 106 and 14.5–32.4 × 106 particles/mL) exceeded the number of bacteria by 2–31 and 13–60 times, respectively; the average viral production was 0.75106 and 1.74 × 106 particles/mL/day, respectively. The proportion of infected cells in the total bacterioplankton (7% on average) and virus-induced mortality of bacteria (8%) were much lower in offshore than in coastal waters (14 and 20%, respectively).  相似文献   

17.
Formyltetrahydrofolate synthetase (E. C. 6. 3. 4. 3) was found in fresh spinach leaves and purified about 60-fold by treatments of ammonium sulfate, protamine sulfate, dialysis, and DEAE-cellulose column chromatography. Some properties of the enzyme were investigated. Optimum pH was found to be 7.5, and optimum temperature was observed to be at 37°C. In the enzyme reaction, FAH4 and formate were required specifically as the substrates, and Mg++ and ATP were essential components. The Michaelis constants for dl-FAH4, formate, ATP and magnesium chloride were 1.7×10?3 m, 1.7×10?2 m, 4.1×10?4 m and 3.3×10?3 m, respectively. The primary product formed in the reaction catalyzed by the enzyme was suggested as N10-formyl-FAH4 spectrophotometrically. It was observed that the enzyme also catalyzed the reverse reaction. The possible role of the enzyme in plants was discussed.  相似文献   

18.
Multiple resonance frequency spectra (MRFS) provide a rapid and repeatable method for determining the flexural stiffness and modulus of elasticity, E, of segments of plant stems and leaves. Each resonance frequency in a spectrum can be used to compute E, and removal of the distal portion of an organ produces characteristic shifts in spectra dependent upon the geometry of an organ. Hence, MRFS can be used to quantitatively determine the extent to which a particular leaf or stem morphology can be modelled according to beam theory. MRFS of flower stalks of Allium sativum L. are presented to illustrate the technique. The fundamental, f1, and higher resonance frequencies, f2 … fn, of stems and the ratios of f2/f1 f3/f1, and f3/f2 increase as stalk length is reduced by clipping. The magnitudes of these shifts conform to those predicted from the MRFS of a linearly tapered beam. Morphometric data confirm this geometry in 21 flower stalks. Based on this model, the average modulus equals 3.71 × 108 ± 0.32 × 108 N/m2, which compares favorably with values of E determined by static loading (3.55 × 108 ± 0.22 × 108 N/m2) and is in general agreement with ultrasonic measurements (3.8 × 108 to 4.4 × 108 N/m2). Data indicate that determinations of E from a single resonance frequency are suspect, since each resonance frequency yields slightly different values for E. Statistical evaluations from all the frequencies within a MRFS are more reliable for determining E and testing the appropriateness of beam theory to evaluate the biomechanical properties of plants.  相似文献   

19.
Abundant growths of macrophytes are a common feature of streams in open lowland areas of New Zealand during summer, but the values of these to aquatic biota are poorly understood. We studied the temporal dynamics of, and associations amongst, elements of a macrophyte-invertebrate system to provide an improved information base for lowland stream management. The biomass of macrophytes increased significantly over the four quarterly sampling occasions from 43.8 g m-2 in June to 370.8 g m-2 in March; biomass was dominated by Egeria densa on all dates, except in December when Potamogeton crispus was dominant. We did not detect strong associations between epiphyton biomass and invertebrate abundance in our study, but this may reflect the fact that we sampled loosely-adhering epiphyton on young, surface-reaching shoots whereas invertebrates were collected from macrophytes growing through the water column. Density of some invertebrate species per gram dry weight of plant material varied by macrophyte type, with the chironomids Tanytarsus vespertinus and Naonella forsythi displaying positive correlations with Egeria and Potamogeton biomass, respectively. The shrimp Paratya curvirostris accounted for 50% of phytophilous invertebrate biomass, with Chironomidae the only other group to comprise more than 9%. Abundance of total phytophilous invertebrates displayed a positive linear relationship with macrophyte biomass in a sample (0.1 m2), and a humped relationship with species richness, such that highest numbers of taxa occurred at macrophyte biomass levels around 400 g dw m-2. Our study suggests that intermediate macrophyte biomass levels are likely to enhance macroinvertebrate biodiversity in sandy-bottomed lowland streams. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary A fast method for a single-step fractionation of a number of tRNA methyltransferases fromSalmonella typhimurium is described. The method basically consists of ion-exchange chromatography on a phosphocellulose column and permits the separation of the enzymes forming mt6A, m1G, m5U, m7G. The enzyme fractions appear sufficiently purified to allow the estimation of some molecular and kinetic properties. The apparent KM for adenosylmethionine range between 1.5 to 3.2×10−5 M, whereas KM for undermethylated tRNA range between 3.1×10−5 M to 3.1×10−4 M. Glycerol gradient determination indicates the following Mr for the native proteins: 25×103, 40×103, 50×103 and 65×103 for m7G-, mt6A-, m1G- and m5U-forming enzymes, respectively. A complete analysis of methylated nucleosides formedin vivo inS. typhimurium has been obtained: it also allowed us to infer the pattern of the various tRNA methyltransferases for this prokaryote. The tRNA methyltransferase forming mt6A has been isolated for the first time from any type of cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号