首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than ten new zooplankton species were registered in reservoirs of the Upper Volga during 2002–2005. Since 2003, the cladoceran Diaphanosoma orghidani Negrea, had intensively settled in different biotopes of Ivankovo, Uglich, Rybinsk, and Sheksna reservoirs and is the most abundant (16 000 ind./m3) in the latter one. The rotifer Asplanchna henrietta Langh. was found for the first time in Rybinsk Reservoir in 1985, and by 2004, this species had also occurred in Ivankovo, Uglich reservoirs, Lake Nero, and some small waterbodies of the basin. In Lake Nero its density reaches especially high values (>1 million ind./m3). Causes, mechanisms, and ecological consequences of the expansion of new zooplankton species are discussed.  相似文献   

2.
The Black Sea snail Lithoglyphus naticoides (C. Pfieffer, 1828) (Mollusca: Gastropoda: Lithoglyphidae) was first recorded in the Uglich Reservoir in the summer of 2013. By 2015, several new local settlements of the snail had been found in the Uglich and Rybinsk reservoirs, indicating its successful naturalization in the Upper Volga basin. Parasitological studies of L. naticoides from these habitats reveal the parthenitae of three trematode species.  相似文献   

3.
Data on the chlorophyll a (Chl a) content in water of the Volga River reservoirs sampled at 64–73 sampling stations in the summer period of 2015 and 2016, analyzed using the standard spectrophotometric method, are presented. Chl a content varied from a minimum of 0.9–3.0 to a maximum of 7.6–32.1 μg/L in June 2016, from 2.1–15.5 to 9.4–86 μg/L in August 2015, and from 1.1–6.7 to 15.1–62.7 μg/L in August 2016. A local increase in Chl a occurred in the near-dam areas of the reservoirs, as well as downstream of the confluence with tributaries. The highest Chl a concentrations were constantly recorded in the highly eutrophic Shoshinskii Reach in the Ivankovo Reservoir and at the Oka River mouth in the Cheboksary Reservoir. The average values of Chl a concentrations make it possible to classify the Ivankovo, Uglich, Rybinsk, and Cheboksary reservoirs as eutrophic; the Gorky and Kuibyshev reservoirs as moderately eutrophic; and the Saratov and Volgograd reservoirs as mesotrophic.  相似文献   

4.
In order to test the hypothesis that fish distribution is related to water depth, three exploited reservoirs were sampled at day and at night using a Simrad EK60 echosounder. Acoustic surveys were carried out between February and June 2008, which focused on the fish size, species density (fish per ha) and biomass (kg ha?1) along vertical and longitudinal gradients. It was evident in the surface layer (0–3 m) during daytime that the larger fish sizes occupy waters near the dam or the middle of Lakhmess and Sejnane reservoirs. In the upper layer at nighttime, a gradient of fish size is shown proportional to the depth at Lakhmess Reservoir and inversely proportional at the man‐made Sejnane Lake. At Lakhmess and Laabid reservoirs, fish density was significantly higher in deep water (3926 ± 1409 and 624 ± 258 fish per ha) rather than in the upper layer (988 ± 2 and 8 ± 2 fish per ha in daytime, respectively), while at Sejnane Reservoir the number of fish per area was similar along the vertical gradient. The biomass was significantly higher in waters deeper than 3 m at Sejnane Reservoir whereas at Lakhmess it was higher in the surface layer. Fish biomass increased from upstream (0.16 ± 0.05 kg ha?1) to middle (3.07 ± 2.96 kg ha?1) and downstream (3.82 ± 2.30 kg ha?1 at night) areas in the man‐made Laabid Lake while a similar longitudinal gradient occurred in the deepest Sejnane Reservoir. The vertical gradient in fish distribution is discussed. From the dam to the tributary of the entire water column, it was concluded that fish biomass distribution was governed by depth and was most abundant in areas with deep waters.  相似文献   

5.
In 1992, we discovered populations of the nonindigenous quagga mussel Dreissena rostriformis bugensis in the middle reaches of the Volga River. The same species was found in samples collected between 1994 and 1997 in the Volga delta and in shallow areas of the Northern Caspian Sea. D. r. bugensis always co-occurred with its more widespread congener, the zebra mussel D. polymorpha (Pallas 1771). The quagga mussel's contribution to total Dreissena abundance increased over time in the middle Volga reservoirs and Volga River delta. D. r. bugensis was common in the Volga portion of Rybinsk Reservoir during 1997 and, by 2000, it was in Uglich, Rybinsk and Gorky Reservoirs on the Upper Volga River. D. r. bugensis was neither found in Ivankov Reservoir, nor in terminal sections of the Volga-Baltic corridor including the eastern Gulf of Finland. Presently, all but the northern-most regions of the Volga River have been colonized by D. r. bugensis. We hypothesize that its introduction into the Volga River and Caspian basin occurred no later than the late 1980s via commercial shipping that utilized the Volga-Don waterway to navigate between the source Black-Azov Sea region and recipient areas on the Volga River. Larval drift likely contributed to establishment of populations at downstream sites, while human-mediated vectors may be responsible for introductions to upstream locations on the Volga River. We anticipate continued northward dispersal in conjunction with shipping activities.  相似文献   

6.
The spatial distribution and seasonal dynamics of heterotrophic bacterioplankton production have been studied and the value of autochthonous sources of substrates for bacteria has been evaluated in the pelagic zone of the meso-eutrophic Rybinsk Reservoir (the Upper Volga). During the vegetation period, the bacterial production ranges from 32 to 1352 (on average 444 ± 44) mg C/(m2 × day). The total input of organic carbon from the processes of extracellular production of phytoplankton, viral lysis of prokaryotic cells, and feeding of protists provides 9–64% (32 ± 3% on average) of the daily carbon demand for heterotrophic bacterioplankton.  相似文献   

7.
In 1992, we discovered populations of the nonindigenous quagga mussel Dreissena rostriformis bugensis in the middle reaches of the Volga River. The same species was found in samples collected between 1994 and 1997 in the Volga delta and in shallow areas of the Northern Caspian Sea. D. r. bugensis always co-occurred with its more widespread congener, the zebra mussel D. polymorpha (Pallas 1771). The quagga mussel's contribution to total Dreissena abundance increased over time in the middle Volga reservoirs and Volga River delta. D. r. bugensis was common in the Volga portion of Rybinsk Reservoir during 1997 and, by 2000, it was in Uglich, Rybinsk and Gorky Reservoirs on the Upper Volga River. D. r. bugensis was neither found in Ivankov Reservoir, nor in terminal sections of the Volga-Baltic corridor including the eastern Gulf of Finland. Presently, all but the northern-most regions of the Volga River have been colonized by D. r. bugensis. We hypothesize that its introduction into the Volga River and Caspian basin occurred no later than the late 1980s via commercial shipping that utilized the Volga-Don waterway to navigate between the source Black-Azov Sea region and recipient areas on the Volga River. Larval drift likely contributed to establishment of populations at downstream sites, while human-mediated vectors may be responsible for introductions to upstream locations on the Volga River. We anticipate continued northward dispersal in conjunction with shipping activities.  相似文献   

8.
Virioplankton and bacterioplankton abundance has been determined in the pelagic and littoral zones of the Rybinsk Reservoir during the ice-covered period. The role of viruses in heterotrophic bacterioplankton infection and mortality is assessed. At water temperatures between 0.3 and 0.9°C, the number of planktonic virus particles and planktonic bacteria varies from 37.1 × 106 to 84.1 × 106 particles/mL, (57.3 ± 2.1) × 106 particles/mL on average and from 2.50 × 106 to 6.11 × 106 cells/mL, (3.66 ± 0.16) × 106 cells/mL on average, respectively. The ratio of the virus number to the bacteria number varies from 8.8 to 27.9, being 16.5 ± 0.7 on average. Visually infected cells comprise 0.3–0.5% (1.5 ± 0.2% on average) of the total number of bacterioplankton. Infected bacterial cells contain from 5 to 107 (17 ± 4 on average) mature virus particles. The average virus-induced mortality of bacteria accounts for 13.0 ± 1.9% (variations range from 2 to 55%) of the daily bacterial production, indicating that viruses play an important role in the regulation of bacterioplankton production and abundance in the Rybinsk Reservoir during the ice-covered period.  相似文献   

9.
On the basis of materials that were collected in 2005–2010 in the Sheksna, Ivankovo, Uglich, Rybinsk, Gorky, and Cheboksary reservoirs, the occurrence and abundance of two species, the indigenous Diaphanosoma brachyurum (Lievin) and the recent invader D. orghidani Negrea, are analyzed. These species coexist in all waterbodies. The abundance of alien species is comparable with the abundance of aboriginal species. Over five years, the frequency of D. orghidani has increased 1.5–2 times. The effect of abiotic (water temperature, current, and color) factors, competition with other filter feeders, and predation by invertebrates and fish on the abundance and spatial distribution of the species are discussed.  相似文献   

10.
The results of our long-term studies of populations of two dreissenid species (Dreisena polymorpha Pallas, 1771 and D. bugensis Andrusov, 1897) in Rybinsk and Gorkii reservoirs have been analyzed. New habitats of D. bugensis have been found in Rybinsk Reservoir.  相似文献   

11.
Spatial distribution of planktonic viral particles (virioplankton) and mortality of heterotrophic bacteria caused by viral lysis were studied in the eutrophic Ivan’kovskoe and mesotrophic Uglichskoe reservoirs (the Upper Volga). During the summer peak of phytoplankton, the number of viral particles was higher in the Ivan’kovskoe Reservoir ((55.1 ± 9.5) × 106 ml−1 on average) than in the Uglichskoe Reservoir ((42.9 ± 5.1) × 106 ml−1 on average). The ratio of viral to bacterial abundances ranged from 2.5 to 7.0. The average number of mature phages in infected heterotrophic bacteria varied from 17 to 109 particles/cell. Most of the infected bacterial cells in the Ivan’kovskoe Reservoir were rod-shaped, and, in the Uglichskoe Reservoir, they were mainly vibrio-shaped. In the Ivan’kovskoe Reservoir, from 8.3 to 22.4% of planktonic bacteria were infected by phages, suggesting phage-induced mortality of bacterioplankton equal to 10.5–34.8% (19.1% on average) of the daily bacterial production. In the Uglichskoe Reservoir, from 9.4 to 33.5% of bacteria were phage-infected, suggesting phage-induced bacterial mortality of 13.7–40.2% (23.5% on average) of the daily bacterial production. The obtained results testify to an important role of autochthonous viruses in the regulation of bacterioplankton abundance and production in the reservoirs.  相似文献   

12.
Phaeocystis spp. cell and colony mass fluxes and their contribution to the vertical particulate organic carbon (POC) export from a wide range of stations were quantified by short-term sediment traps. The compilation of available data, ranging from polar to sub-arctic and boreal regions, revealed that Phaeocystis colonial and single cells frequently are observed in shallow sediment traps at 30–50 m depth (average of 7 ± 11% of POC export). A strong vertical export decline between 40 m and 100 m diminished the contribution of Phaeocystis spp. cell carbon to vertical export of POC to only 3 ± 2% at 100 m depth, with two exceptions (deeper mixed stations). Estimates of potential corresponding mucus contribution increased the average Phaeocystis spp. contribution to <5% of POC export. The vertical flux attenuation efficiency is higher for Phaeocystis spp. than for diatoms. The overall contribution of Phaeocystis spp. to vertical carbon export based on direct investigations of vertical organic carbon export is small.  相似文献   

13.
Preferred direction of motion under influence of geomagnetic field and its modifications was registered in zebrafish (Danio rerio) raised in laboratory culture and in roach (Rutilus rutilus) from the Rybinsk Reservoir. In the geomagnetic field, specimens of zebrafish prefer two opposite directions oriented towards the north and south, while they prefer towards east and west at 90° turning of the horizontal component of geomagnetic field. The specimens of roach in the geomagnetic field prefer only the direction oriented towards east–northeast. This direction coincides with the direction along the canal where roach was sampled to the main river channel part of the Rybinsk Reservoir. At 90° rotation of the horizontal component of geomagnetic field, the direction turns to the south–southeast. The reasons for selection of certain directions in the geomagnetic field are discussed.  相似文献   

14.
Photosynthetic carbon allocations into different macromolecular classes provide important clues regarding physiological conditions of phytoplankton and the nutritional status of potential grazers. The productivity experiments for photosynthetic carbon allocations were conducted at three light depths (100, 30, and 1 %) for nine different stations in the northern Bering Sea as an important gateway into the western Arctic Ocean, using the 13C isotope tracer technique to determine the major controlling factors and physiological conditions of phytoplankton. The photosynthetic carbon allocations into different macromolecular classes [Low molecular weight metabolites (LMWM), lipids, proteins, and polysaccharides] of primary producers were determined based on the productivity experiments. LMWM and polysaccharides had similar vertical patterns whereas lipids and proteins had reverse vertical patterns at all the stations, which is consistent with other results under different light depths. The overall average allocations were 37.9 (SD = ± 18.8 %), 26.6 (SD = ± 17.4 %), 26.5 (SD = ± 20.7 %), and 9.1 % (SD = ± 7.8 %), for LMWM, lipids, proteins, and polysaccharides, respectively. Based on a general pattern of macromolecular production in the northern Bering Sea, phytoplankton was in a physiologically transitional phase from an unlimited status to a nitrogen-deficient condition during our cruise period, 2007. However, more in situ field measurements for macromolecular production under a variety of environmental conditions will improve the understanding of the physiological responses of phytoplankton to the ongoing environmental changes in the Arctic Ocean.  相似文献   

15.
16.
Based on materials of 2000–2003, the characteristics of the distribution, size-age composition, and growth rate of Clupeonella cultrivensis from the Rybinsk Reservoir is given. Comparative data on reservoirs of the Middle Volga are provided. It is shown that, during these three years, C. cultriventris was distributed unevenly over stretches of water and increased its numbers tenfold. A decrease in the linear sizes and the body weight occurred against the background of the increased abundance.  相似文献   

17.
According to trawl-acoustic surveys, differences in the range of diurnal vertical movements of bream Abramis brama in the Rybinsk and Ivankovo reservoirs are revealed. The observed fish behavior is related to strategy of occupation of feeding biotopes. It is supposed that residence in bottom payers under conditions of low temperature is oriented to energy saving.  相似文献   

18.
The specific features of rheoreaction in roach Rutilus rutilus (L.) larvae from open and protected shallows of the Rybinsk Reservoir have been studied. Data on length and weight of roach sampled at various habitats at B–E developmental stages are presented. It has been revealed that the type of roach larvae rheoreaction is a behavioral mechanism of their distribution over different types of habitats, not only in rivers but also in the waterbodies with slow water turnover rates—lakes and reservoirs. By the time of developmental stage E, this mechanism provides the sustainable spatial separation of juvenile fish, which in the future may lead to intrapopulation differentiation in roach.  相似文献   

19.
Abundance, biomass, and taxonomic composition of heterotrophic nanoflagellates (HNFs) have been determined in the water column and bottom sediments of the large lowland meso-eutrophic reservoir (Rybinsk Reservoir, Upper Volga) in summer. The role of HNFs in the consumption of the bacterial production is estimated. In the reservoir, 55 species from 15 large taxa, including 35 species from the plankton, are identified and 45 species are from benthos samples. The orders Kinetoplastida, Choanomonada, and Chrysomonadida are distinguished by the highest species diversity. Abundance and biomass of HNFs in the water column average 991 ± 326 cells/mL and 41.4 ± 14.1 mg/m3, while in the bottom sediments they are (236 ± 61) × 103 cells/mL and 10.7 ± 4.0 μg/mL, respectively. The biomass of HNFs average 11.2% of the bacterial biomass in the water column and only 0.8% of that in the sediments. Flagellates are found to be a major factor which control the development of bacterioplankton grazing, on average, 32.3% of its daily production, whereas their impact on bacteriobenthos is insignificant, as they consume, on average, only 2.0% of its production.  相似文献   

20.
Data on the distribution, size and age structure, and growth of the pike Esox lucius collected in the Rybinsk Reservoir in 1953–2015 were analyzed. The main factors that determine the population size of the pike and dynamics of its structural indices are the intensity of the fishery and changes in the temperature regime of the reservoir. Since the mid-1990s, under the influence of high harvesting load, the population of the pike decreased and its age structure changed toward the predominance of individuals of younger age groups. As a result of climate warming, the water column warming of the Rybinsk Reservoir in the 2000s affected the growth character of large individuals. The ratio of phenotypes with small and high number of vertebrae in the first year depends on the water temperature during embryonic development. Among the large individuals preferring deep-water areas with a lower temperature, approximately 50% have 61–62 vertebrae in the axial skeleton. It is suggested that, with climate warming and the development of pike spawn at a higher temperature, the portion of individuals with a high number of vertebrae may decrease, which will lead to a decrease in the number of recruits of the deep-water part of the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号