首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed bag experiments in a Canadian Shield lake with generally high seston (suspended food particles mainly composed of algae) carbon (C):phosphorus (P) ratios, and investigated the responses of individual and population growth of herbivorous Daphnia dentifera on their abundance with (+P) and without (−P) a phosphorus enrichment to lake water. In both treatments, increased abundance of D. dentifera reduced seston C concentration and was accompanied by decreases in population and individual growth rates. However, P-enrichment increased seston P concentration and then reduced seston C:P ratio from 400–700 to ca 100 (by atoms). As a result, both individual and population growth rates were significantly higher in the +P treatment at all animal abundances even though seston C concentrations were similar between the treatments. The magnitude of the growth enhancement by the P-enrichment was independent of animal abundance. Stepwise regression analyses revealed that 71 and 90% of the variance in the population and individual growth rates, respectively, were explained by seston C and P concentrations, and that the contribution of the seston P concentration was roughly the same as that of seston C. Such joint effects of seston C and P indicate that food quality (P content) as well as food quantity (C concentration) can influence Daphnia not only at the level of individual growth but also at the level of population dynamics in P-limited lakes. Our results thus strongly corroborate the hypothesis that the population development of a key herbivore Daphnia in P-limited Canadian Shield lakes is inhibited by the direct effects of P-limited food on individual growth, which weaken the strength of trophic cascading interactions starting from piscivorous fish through planktivorous fish and zooplankton to algae.  相似文献   

2.
A conceptual mathematical model of the dynamics of fish and zooplankton (rotifer) populations of connected lakes Naroch and Myastro (Belarus) is built and examined with parameters based on field data. It is shown that community coupling and trophic interactions give rise to both regular and irregular oscillations in population numbers.  相似文献   

3.
Seasonal dynamics in elemental composition [carbon (C), nitrogenand phosphorus (P)] of seston and zooplankton were studied overseveral years in three hypereutrophic Dutch lakes with persistentdominance and high biomass of cyanobacteria. In all three lakes,there was a strong pattern with decreased P-content and increasedC:P ratio in seston (<150 µm) coinciding with the increasein water temperature. The seston C:P ratios (at:at) were morethan doubled with the rising temperature, i.e. from 200 (at:at)in winter to 500 in summer. Sestonic C:P ratios increased overthe growing season, suggesting that seasonal dynamics amongautotrophs with high P-uptake in winter and support of subsequentphytoplankton growth by consumption of internal cellular P (P-quota)was the main cause of low sestonic P contents in late summer.This could, however, occur in concert with a physiologicallydriven decrease in cell-specific P at higher temperatures insummer. In contrast, the annual variation of C:P ratios of thezooplankton fraction was only 10% of that of seston. The variationsof C:P ratios of the zooplankton were, nevertheless, stronglycorrelated with those of seston. For most of the summer, sestonC:P ratios were far above the threshold ratio for P-limitationin Daphnia and other P-demanding species. This will pose furtherconstraints on growth performance of Daphnia in these lakes,thus adding to the fish predation pressure and the poor foodquality of cyanobacteria per se. The low grazing pressure causesa high biomass of low-quality autotrophs, promoting a stablestate with low trophic transfer efficiency.  相似文献   

4.
Seasonal changes in the biochemistry of lake seston   总被引:3,自引:0,他引:3  
1. The quantity of seston was measured and the elemental carbon, nitrogen and phosphorus (C, N, P) and biochemical composition (carbohydrate, protein, lipid) of the < 53 μm size fraction in three temperate lakes during one year was analysed. The lakes differed in nutrient concentration and were characterized as oligotrophic, mesotrophic and eutrophic. Linear regression analyses defined associations between seston composition and either lake trophic status, depth or season. 2. The concentration of particulate organic seston was greatest during spring and autumn and lowest during the clear water period in early summer. Seasonal patterns in seston elemental and biochemical percentage composition (quality) were observed to be independent of differences in seston quantity. 3. Concentrations of seston C, N and P were high in most cases in the spring and autumn and low in summer. Concentrations of P were particularly high during late summer and early autumn in the metalimnion, perhaps because of recovery of P from anaerobic sediments and hypolimnetic waters. Because seston C and N did not increase as markedly as P, C : P and N : P ratios both declined in the autumn. Primary production was thought to be co-limited by N and P in all three of these lakes; however, the data suggested that N might be more important as a major limiting nutrient in the eutrophic lake as the metalimnion increased in depth in late summer and autumn. 4. Concentrations of protein, carbohydrate, polar lipid and triglyceride generally increased with lake type as expected (greatest in the eutrophic lake), but showed no relationship with water depth. As the year progressed, no significant changes were measured in protein and carbohydrate concentrations; however, the concentration of polar lipid decreased and triglyceride increased significantly with time of year. 5. The biochemical composition of seston varied during the year and among lakes; for example, in Lake Waynewood the proportion of protein composing the seston (percentage protein by weight) varied from < 10% to > 40%. No statistically significant patterns in the percentage protein or carbohydrate were found. However, the proportion of seston comprised of triglyceride decreased with lake type and increased during the year; whereas the proportion of seston as polar lipid increased with lake type and decreased during the year. Triglyceride comprised most of the lipid. Both protein : lipid and protein : carbohydrate ratios tended to be greatest in summer and lowest in the spring and autumn. 6. Relationships between samples and biochemical composition analysed by Canonical Correspondence Analysis (Canoco) indicated similar patterns in seasonal changes in seston biochemistry for the three lakes, with samples separated primarily by vectors for lake type (oligotrophic to eutrophic) and the percentage polar lipid (proportion of total lipid) and secondarily by vectors for date and water depth (epilimnion or metalimnion). 7. These seasonal biochemical changes in the seston food base were compared with biochemical changes known to occur in algae grown under N-or P-limited conditions in the laboratory, and the resultant quality of this algal food for suspension-feeding consumers (zooplankton). It was concluded that zooplankton were likely to be physiologically challenged by these distinct seasonal shifts in the quality of lake seston.  相似文献   

5.
Although in a strict sense the term phytoplankton biomass only refers to living algal material, in aquatic ecology the term has been associated with a variety of biological and biochemical procedures used to quantify the particulate matter suspended in natural waters. Relative merits of different biomass characteristics have been studied in three Dutch freshwater lakes with great differences in absolute biomass. Parallel determinations have been made of seston dry weight and supplementary elementary and caloric analyses of seston, of chlorophyll-a concentration and supplementary paper chromatographic analyses of pigment extracts, of particle concentration and particle size distribution as studied with an electronic particle counter, and of phytoplankton cell volume as calculated from the results of microscopic enumeration and sizing of algae. In this way an attempt was made to create a detailed picture of the nature of the seston of the three freshwater lakes.Different analytical techniques give strikingly different information, the accuracy of any method is largely dependent on the circumstances present, and different biomass characteristics therefore are only of value in limited spheres. It is suggested to distinguish between total seston characteristics (e.g. seston dry weight, particulate organic carbon, total particle volume) and strictly algological biomass characteristics (e.g. chlorophyll-a concentration, phytoplankton cell volume). The pattern of growth of phytoplankton populations shown by e.g. chlorophyll-a concentration may differ markedly from that indicated by e.g. total particle volume or seston dry weight. Also, to more or less extent the wax and wane of phytoplankton populations may go undetected among the total seston. Apparently, there is no one method of estimating biomass and no conversion factor that may serve for general purposes. In general, unambiguous information on the nature of the seston of natural waters may only be obtained by estimating total seston characteristics and algological biomass characteristics simultaneously. Depending on the objective of the investigation supplementary component analyses should be carried out to guarantee the correct interpretation of the results.  相似文献   

6.
As the human demand for freshwater natural resources such as fish and drinking water increases, we may rely more heavily on models to predict the response of aquatic ecosystems to natural and anthropogenic disturbance. Theses models in turn implicitly depend on the underlying spatial distribution of organisms. In terrestrial ecosystems, increased natural resource utilization has transformed habitat and changed the spatial distribution of organisms, with subsequent negative effects on biota. Recent studies in lakes demonstrate that human development of lakeshores alters the physical habitat and nutrient cycles. The impact of such disturbance by humans on the spatial distribution of aquatic organisms, however, remains unknown. Here we quantify the effect of lakeshore development on the spatial distribution of fishes in 23 lakes in the US Pacific Northwest. We found a significant decrease in the spatial aggregation of fishes with increased shoreline development by humans, reflecting a loss of refugia and resource heterogeneity that favors aggregation among fishes. We also found that lakes with a high perimeter–surface-area ratio and a relatively shallow littoral zone had much higher levels of fish aggregation, suggesting the importance of terrestrial inputs to lakes. Finally, we found a marginally significant decrease in fish spatial aggregation with increased total phosphorus concentration, but no effect of chlorophyll concentration, water transparency, the predator–prey ratio, or number of species on fish spatial distributions. These results suggest that anthropogenic modification of shorelines is significantly altering the spatial distribution of important aquatic organisms, and that these changes may have important implications for predictive modeling of ecosystem dynamics.  相似文献   

7.
Gulati  R. D. 《Hydrobiologia》1990,(1):99-118
Structure and grazing activities of crustacean zooplankton were compared in five lakes undergoing manipulation with several unmanipulated eutrophic (shallow) and mesotrophic (deep) lakes in The Netherlands. The biomanipulated lakes had lesser number of species and their abundance, both of rotifers and crustaceans, and had much larger mean animal size (3–11 μg C ind.−1) than in the unmanipulated eutrophic lakes (0.65 μG C ind.−1). WhereasD. hyalina (=D. galeata) andD. cucullata generally co-occurred in the unmanipulated lakes, in the manipulated lakes bothD. hyalina and other large-bodied daphnids,D. magna,D. pulex (=D. pulicaria), were the important grazers. In the biomanipulated lakes an increase in the individual crustacean size and of zooplankton mass were reflected in a decrease in seston concentration, higher Secchi-disc depth and a marked decrease in the share in phytoplankton biovolume of cyanobacteria. Biomass relationship between seston (150 μm) and zooplankton indicated a Monod type relationship, with an initial part of the curve in which the zooplankton responds linearly to the seston increase up to aboutca. 2 mg C l−1, followed by a saturation of zooplankton mass (0.39 mg C l−1) at 3–4 mg C l−1 seston, and an inhibitory effect on zooplankton mass at seston levels>4 mg C l−1. This latter is related to predominance in the seston of cyanobacteria. In the biomanipulated lakes, the zooplankton grazing rates often exceeded 100% d−1, during the spring, and food levels generally dropped to <0.5 mg C l−1. The computed specific clearance rate (SCR) of zooplankton of 1.9 l mg−1 Zoop C is well within the range of SCR values (1.7–2.2 l mg−1 Zoop C) from deep and mesotrophic waters, but about an order of magnitude higher than in the eutrophic lakes, with the food levels 10-fold higher. For 25% d−1 clearance of lake seston between 35 and 60 ind. l−1 are needed in the biomanipulated lakes against 1200–1300 ind. l−1 in eutrophic lakes. Similarly, about 10 to 15 times more crustacean grazers are required to eliminate the daily primary production in the eutrophic lakes than in the biomanipulated lakes. These numbers are inversely related to the differences in animal size. The corresponding biomass values of zooplankton needed to clear the daily primary production in the eutrophic waters were 0.1–0.2 mg C l−1 in the biomanipulated lakes, but about 0.45 mg C l−1 in the unmanipulated eutrophic waters. Only if the water was kept persistently clear by zooplankton was there a balanced seston budget between the inputvia primary production and elimination by zooplankton. Mostly, however, the input exceeded the assimilatory removal by zooplankton, such that the estimated seston loss could be attributed to sedimentation and mineralization.  相似文献   

8.
Andersson  Tord  Håkanson  Lars 《Hydrobiologia》1992,235(1):685-696
Twenty-five small, mainly oligotrophic, forest Swedish lakes were treated in different ways (e.g. liming) during 1987 in order to reduce the Hg levels in fish. The temporal variation of Hg concentration in sediments and water, and the extent that this variation can be related to normal lake characteristics and/or altered chemical conditions due to lake remedial measures was studied. Yearly mean alkalinity was increased from 0.07 to 0.18 meq l–1 and pH from 6.0 to 6.5 due to the treatments. The Hg concentration, as well as the Hg:C ratio, in seston was reduced after treatment; the median Hg/C ratio in seston decreased from 1.6 g g–1 during 1986 to 0.8 g g–1 during 1988. In the water column the concentration of the reactive plus non-reactive Hg fraction (RIHg, detected after reduction with NaBH4) showed a similar inter-year variation to the Hg content in seston, in contrast to the total Hg concentration in water column which was not decreased after the treatments. The increase in pH due to the remedial measures appeared to be the main cause of the decreased RIHg concentration, although the humic content (measured as colour) also explained a large part of the variation in RIHg concentration between the lakes. The decrease in the RIHg concentration in the lake water is the probable reason for the reduced Hg levels observed in the seston.  相似文献   

9.
Biomanipulation measures in lakes, taken to diminish algal blooms, have mainly been restricted to the reduction of zooplanktivorous fish with the aim to stimulate the grazing pressure by native filter feeders such as Daphnia. However, larger filter feeders like the exotic zebra mussel, Dreissena polymorpha, have been suggested as an optional tool because of their high filtering capacity. We compared grazing by two filter feeders, D. polymorpha and Daphnia galeata, offered seston from Lake IJsselmeer, the Netherlands in two consecutive years: 2002 and 2003. The seston in both years was dominated by the colony-forming cyanobacterium Microcystis aeruginosa. The grazing studies were performed under controlled conditions in the laboratory and samples were analyzed on a flow cytometer, making it possible to quantify grazing on different seston components and size fractions, including cyanobacteria, other phytoplankton (green algae, diatoms, etc.), and detritus. No differences in clearance rates, on a per weight basis, were found between the two grazer species. The clearance rate on cyanobacteria (especially <20 μm) was lower in 2003 than in 2002. In 2003, the microcystin concentration of cyanobacteria was higher than in 2002, suggesting that the observed lower clearance rate in 2003 was due to the enhanced toxin content of the cyanobacteria. Zebra mussels, although indiscriminately filtering all seston groups out of the water, positively selected for phytoplankton in their mantle cavity, irrespective of its toxicity, and rejected detritus. Since no differences in clearance rates were found between the two grazer species, we conclude that for biomanipulation purposes of shallow lakes, native species like the daphnids should be preferred over exotic species like zebra mussels. When the seston is dominated by phytoplankton that cannot be filtered out of the water column by Daphnia, however, the use of zebra mussels may be considered. Care should be taken, however, in the choice of the lakes since the mussels may have severe ecological and economic impacts.  相似文献   

10.
De Lange  H.J.  Arts  M.T. 《Aquatic Ecology》1999,33(4):387-398
A field survey was conducted to study the relationships amongst the composition of the seston, the nutritional value of the seston for herbivorous zooplankton (Daphnia), and selected water clarity parameters. Sixteen ponds in a wetland area and seven larger lakes, all located in south central Saskatchewan, Canada, were sampled for seston. The phytoplankton species were identified, and various biochemical seston variables were measured. A biotest using the zooplankter Daphnia magna, was employed to assess the nutritional value of the seston. The best seston variable to explain Daphnia growth was the phospholipid content (simple linear regression analysis: R 2 adj = 0.50). The water absorbance ratio A250/A365 was a good predictor of lipid content of the seston. Both the absorbance ratio A250/A365 and the dissolved organic carbon (DOC) concentration were negatively correlated with Daphnia growth. We hypothesize that the penetration of visible and ultraviolet radiation is an important determinant of seston quality, especially the phospholipid content, and that this has important implications for determining ultimate growth rates of herbivorous zooplankton.  相似文献   

11.
Lakes were surveyed to assess the potential patterns of latitudinalvariation in carbon:nitrogen:phosphorus (C:N:P) stoichiometryof lower food web components. Thirty-four lakes were surveyedat an arctic latitude (68°38'N, 149°38'W) and 10 lakesat a temperate latitude (46°13'N, 89°32'W) during 1997.The temperate data set was augmented with earlier survey resultsemploying similar methods. It was hypothesized that differencesin environmental variables across latitude would cause differencesin community C:N:P ratios, leading to differences in trophicinteractions. Physical measurements (light, temperature), sestonand zooplankton were collected from each lake. Seston and zooplanktonwere analyzed for C, N and P content, and zooplankton were countedand measured for biomass estimates. The degree of trophic interactionbetween seston and zooplankton was assessed by (i) measuringelemental imbalances between seston and zooplankton and (ii)calculating the potential recycling ratio by the zooplanktoncommunity available for seston. Seston C:nutrient, but not N:P,ratios were higher in temperate than arctic lakes. Conversely,arctic zooplankton had higher C:nutrient, but not N:P, ratiosthan zooplankton in temperate lakes. Elemental imbalances weregreater in temperate than in arctic lakes, but N:P stoichiometryof potential zooplankton recycling was nearly identical betweenthe two latitudes. Zooplankton community C:N:P ratios were notrelated to either latitude or seston C:N:P. In accordance withstoichiometric theory, relative abundances of calanoid copepodswere positively correlated with seston C:N in temperate lakes.Additionally, relative abundances of Daphnia were negativelycorrelated with seston C:N ratios in temperate and arctic lakes,and positively correlated with N:P ratios in the arctic. Ingeneral, these results suggest that seston and zooplankton communitystoichiometry differ across latitude, and these differenceshave the potential to affect trophic interactions.  相似文献   

12.
The effectiveness of the optical particle counter (OPC) to estimatezooplankton biomass depends on the variability in zooplanktonshape and the presence of interfering particles. In marine environmentswhere zooplankton are composed of similarly shaped copepods,an average shape is relatively easily obtained. However, infreshwater environments, spheroid cladocerans mix with ellipsoidcopepods and make the application of a single morphometric modeldifficult. To expand the use of the OPC to freshwater environments,we developed new ellipsoid models for three common lake types(eutrophic, mesotrophic, and oligotrophic). In addition, weassessed how closely different size fractions of seston correspondedto zooplankton biomass. When expressed in common dry mass units,OPC- and seston-derived zooplankton biomass estimates showeda 1:1 correspondence with taxonomically derived estimates inproductive lakes (r > +0.70, P < 0.001) but not in oligotrophicsystems. OPC ellipse models differed among lake sets (major-to-minoraxis ratio: 1.5 to 2.7) but were not a simple function of thecladoceran-to-copepod ratio. The seston size fraction that providedthe best estimates of zooplankton biomass was smaller in mesotrophiclakes (>200 µm) than in eutrophic or oligotrophic lakes(>500 µm). The presence of algae and rotifers had nodetectable influence on OPC and size-fractionated seston estimates.Overall, these analyses suggest that OPC and seston providereliable estimates of lacustrine zooplankton biomass as longas region-specific ellipse models and size fractions, respectively,are used.  相似文献   

13.
Responses of tropical cladocerans to a gradient of resource quality   总被引:1,自引:0,他引:1  
1. The response of three tropical cladocerans to a gradient of resource quality was compared in a series of growth bioassays using seston collected from five lakes of different depth and trophic structure in Michigan, U.S.A. To assess the food quality in terms of digestibility, assimilation experiments were performed with 32P‐labelled seston from the same lakes. Animals were also analysed for P‐content in their tissues at the end of these assays. 2. In general, assimilation efficiency was higher when animals fed on seston from shallow compared to deep lakes, and was significantly correlated with growth rates, suggesting that shallow lakes have the best food resources in terms of digestibility and P availability. 3. Results also showed that all cladoceran species responded similarly to the resource gradient, with lower growth rates in deep lakes and higher growth rates in shallow lakes, although the strength of response (sensitivity) was different among the species tested. 4. The cladoceran Moina micrura was the most sensitive species, and also displayed the highest P‐content and maximal growth rate, a pattern consistent with the growth rate hypothesis. 5. However, seston C : P ratio and growth rates in the different resources did not correlate with the animals’ P‐contents, showing an uncoupling between RNA‐phosphorus demands for growth and seston food quality. 6. In conclusion, our results support the idea that digestion resistance in algae is a major constraint to cladocerans in natural plankton communities.  相似文献   

14.
1. Food selection experiments were conducted by acclimating calanoid copepods (Eudiaptomus spp.) in suspensions of natural seston and then adding pairs of dual-labelled (14C/32P) algae. Each feeding trial measured selectivity between a small, high-quality reference alga, Chlamydomonas reinhardii, and a test alga that differed in size and/or food quality. The influence of food concentration on food selection was tested by using seston from two lakes with contrasting food abundance and by including treatments with filtered lake water ('starved’) and seston diluted with filtered water or enriched with cultured algae. 2. Copepods that had been starved or acclimated to natural seston with low food abundance preferred the larger of two labelled algae, regardless of the nutritional quality of the algae. In agreement with the predictions of an optimal diet model, however, copepods that were acclimated to high food conditions discriminated against low-quality foods, including digestion-resistant algae and dead algae. 3. Selectivity coefficients showed excellent agreement with a previous study involving the same taxa of copepods and labelled algae but in which the copepods had been acclimated to pairs of cultured algae rather than natural seston. Thus, these comparisons emphasize the importance of food availability in modulating copepod selectivity for foods that differ in nutritional quality and suggest that such behaviour occurs in nature.  相似文献   

15.
SUMMARY. 1. Total seston, and invertebrate drift were studied before and after lime addition to Fyllean River, a stream-iake system in Halland county, southwest Sweden, with poorly buffered waters undergoing acidification. 2. The largest effect of liming was on the chemistry of the water. Following liming with 23 mg CaCO3 l?1 the pH of the water changed from 5.8 to 6.8 and alkalinity from 0.04 to 0.13 meq l?1.Turbidity increased from 3.4 to 4.7 JTU with no change in colour. 3. Dissolved organic carbon (DOC) concentration of all samples was in the range 10.7–13.3 mg C l?1 with no significant change occurring due to liming. 4. Total seston increased from 4.35 mg DM 1?1 in unlimed conditions to 6.25 mg DM l?1 after lime addition. All significant changes in seston occurred in the smaller size fraction (0.45–25 μm). 5. Liming reduced the organic content of the partieulate material from an average of 61% to 39% immediately downstream of a lime silo (within 1 km) but had little effect when the river course was interrupted by lakes and impoundments. 6. The lakes in the river system had a larger effect on seston concentration than any effect of the lime addition by itself. Particle concentrations were reduced by 50–55% and DOC by about 1 mg C l?1as the water passed through the lakes. 7. Macroinvertebrate drift density was low in all samples before and after liming and typical of oligotrophic streams. Drift was significantly lower at limed (0.024 ind. m?3) than at unlimed (0.083 ind. m?3) locations. The decrease was only in total drift density with no significant change in the relative abundance of functional groups or in densities of single taxa, except for a reduction in drift of predators in the limed condition.  相似文献   

16.
1. Stormwater management ponds (SWMPs) are taking the place of natural ponds and wetlands in urban areas. SWMPs have the potential to serve as hotspots for nutrient cycling, yet little is known about how urban catchments affect nutrient chemistry and stoichiometry within these ponds. 2. We sampled 50 SWMPs in Southern Ontario, Canada, to characterise their seston stoichiometry and make comparisons with published lake and pond data and models of seston stoichiometry. We tested (i) whether C : N : P ratios were similar to natural ponds and small lakes, (ii) whether seston stoichiometry was scale dependent and (iii) whether variability in seston chemistry could be explained by landscape and pond characteristics, such as catchment imperviousness and hydrological condition (based on recently received rainfall). 3. Seston C : N and C : P ratios were significantly lower in SWMPs than published ratios for small lakes, likely because of high nitrogen and phosphorus concentrations in SWMPs. Our results also showed no dependency of stoichiometric ratios on pond size. Analyses of ratios versus landscape and pond characteristics revealed significant relationships only when ponds were grouped based on the hydrological condition of the catchments. 4. It is likely that SWMPs function very differently during wet and dry periods. When SWMPs are disconnected from the landscape after a lengthy dry period, internal processes become increasingly important for seston stoichiometry.  相似文献   

17.
SUMMARY. 1. In 1981–84 limnocorral (LC) experiments were performed in Lake Lucerne. Switzerland, to manipulate the planktonic community by varying P fertilization and by removing large zooplankton (with a 95 μm screen).
2. The C:P ratios in both suspended and entrapped seston exceeded the 'ideal' C:P ratio of 106 proposed by Redfield, Ketchum & Richards (1963) when P was limiting algal growth.
3. P fertilization could decrease the sestonic C:P ratio to 106 only when P did not limit algal growth; P additions far exceeding the P loading of eutrophic lakes were necessary to obtain this situation.
4. Changes in epilimnetic C:P ratios were usually related to short- term changes in primary production, caused by variable in situ light conditions and turbulence, and subsequent variation in POC concentrations.
5. Entrapped seston in the 95 μm-filtered LCs showed C:P ratios slightly higher than those of suspended seston, indicating fast P release and slower C mineralization in the epilimnetic nutrient cycle.
6. Removing large crustacean zooplankton enhanced epilimnetic P mineralization, and C:P ratios of entrapped seston in the 95 μm-filtered LCs were increased.
7 Detritus formed a relatively high proportion of the seston and amounted to more than two-thirds of the measured POC concentration.
8. Calculations of algal P uptake using information on sestonic C:P ratios and 14C uptake rates are questionable, as long as detritus cannot be separated from algae and net carbon uptake cannot be accurately measured.  相似文献   

18.
In Belarus, Naroch Lake is the only area with a high incidence of the human cercarial dermatitis (HCD). However, very little is known about the taxonomy of avian schistosomes, the causative agents of the disease, which are found in Naroch Lake and other lakes in Belarus. In this study, we used a molecular approach to investigate the systematic position and biodiversity of avian schistosomes from Naroch Lake and Polonevichi Lake. Based on the sequence analysis of the ITS genomic region, we were able to detect four different species of bird schistosomes in Naroch Lake (Trichobilharzia szidati, Trichobilharzia franki, Bilharziella polonica and a novel Trichobilharzia species) and two species in Polonevichi Lake (T. szidati and B. polonica). The data were used to reveal the phylogenetic position of HCD causative cercariae found in Belarusian water reservoirs and to establish their relationships within the group of avian schistosomes. We discuss the possibility of identifying species of Trichobilharzia using the fragment length polymorphism analysis of the ITS region. Possible epidemiological causes of HCD incidence in Belarus are also discussed.  相似文献   

19.
1. Growth and reproduction of Daphnia fed lake seston were measured in two categories of meso‐ to eutrophic lakes differing with respect to terrestrial organic matter influence (humic and clear water lakes). The content of highly unsaturated fatty acids (HUFA), P and N, as well as the taxonomical composition of seston were analysed. 2. Seston HUFA and C : P ratios were similar between lake categories, whereas C : N ratios were lower in the clear water lakes in both spring and summer. Despite the similarity in HUFA and P content of seston, Daphnia growth rate, clutch size and the proportion of gravid females were, respectively, about 1.5, 3 and 6 times higher in the clear water lakes. 3. Differences in growth and reproduction were related to a combination of higher N content and good fatty acid quality of the seston in the clear water lakes. Relatively high biomass of edible algae, such as Rhodomonas sp. and Cryptomonas sp., in the clear water lakes, and differences in water pH likely contributed to the observed differences in Daphnia growth and reproduction between lake categories. Additionally, it is possible that Daphnia was energy limited in the humic lakes despite high particulate organic carbon (POC) concentrations, as the contribution of non‐algal and detrital C to the POC pool was high. 4. Our results suggest that dietary HUFA content has the potential to improve herbivore growth and reproduction if N and P are not limiting. N merits more attention in studies of zooplankton nutrition.  相似文献   

20.
Patterns and sources of variation in Daphnia phosphorus content in nature   总被引:1,自引:0,他引:1  
It has recently been shown that Daphnia can vary in the phosphorus (P)-content of their body tissues, but the relative importance of genetic versus environmental causes for this variation is unexplored. We measured variation in P-content (as % body mass) of Daphnia from eight lakes and conducted experiments to contrast three sources of variation: interspecific variation, clonal variation and phenotypic plasticity. Daphnia P-content decreased with increasing seston C:P ratio across lakes. This relationship reflected both inter- and intraspecific variation. Daphnia parvula and D. dubia exhibited high P-content and were found in shallow lakes with low C:P seston, whereas D. pulicaria had low P-content and was found in deep, stratified lakes having high C:P seston. Populations of D. dentifera spanned this lake gradient and exhibited P-content that was negatively related to seston C:P. Evidence for phenotypic plasticity came from experiments with D. pulicaria and D. dentifera collected from a lake with P-deficient seston and fed a P-sufficient diet in the laboratory. In addition, populations of D. dentifera differed in P-content even after 7 d of feeding on P-sufficient resources, suggesting within-species clonal variation. However, mesocosm experiments revealed broad and surprisingly continuous variation in the P-content of individual clones of D. pulex (range 1.54–1.05%) and D. mendotae (1.51–1.07%) over a gradient in dietary C:P. The broad range in P-content exhibited by individual clones, acclimated for generations, suggests that variation in Daphnia P-content from laboratory experiments needs to be interpreted with caution. These results also show that phenotypic variation in response to environment can be a larger source of variation in P-content than genetic differences within or among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号