首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Controllable cell growth on poly(dimethylsiloxzne) (PDMS) surface is important for its potential applications in biodevices. Herein, we developed a fully biocompatible approach for patterning of cells on the PDMS surface by hydrophobin (HFBI) and collagen modification. HFBI and collagen were immobilized on the PDMS surface one after another by using copper grids as a mask. HFBI self-assembly on PDMS surface converted the PDMS surface from hydrophobic to hydrophilic, which facilitated the following immobilization of collagen. Collagen had admirable ability to support cell adhesion and growth. Consequently, the HFBI/collagen-modified PDMS surface could promote cell adhesion and growth. What is more, the native PDMS surface did not support cell adhesion and growth. Patterning of cells was achieved by directly culturing 293T cells (the human embryonic kidney cell line) on the PDMS surface patterned with HFBI/collagen. Further studies by means of gene transfection experiment in vitro showed that the patterned cells were of good bioactivities. Herein, the biocompatible preparation of cell patterns on the PDMS surface could be of many applications in biosensor device fabrication.  相似文献   

2.
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
The construction of biomaterials with which to limit the growth of cells or to limit the adsorption of proteins is essential for understanding biological phenomena. Here, we describe a novel method to simply and easily create thin layers of poly (2‐hydroxyethyl methacrylate) (p‐HEMA) for protein and cellular patterning via etching with ethanol and microfluidic devices. First, a cell culture surface or glass coverslip is coated with p‐HEMA. Next, a polydimethylsiloxane (PDMS) microfluidic is placed onto the p‐HEMA surface, and ethanol is aspirated through the device. The PDMS device is removed, and the p‐HEMA surface is ready for protein adsorption or cell plating. This method allows for the fabrication of 0.3 µm thin layers of p‐HEMA, which can be etched to 10 µm wide channels. Furthermore, it creates regions of differential protein adhesion, as shown by Coomassie staining and fluorescent labeling, and cell adhesion, as demonstrated by C2C12 myoblast growth. This method is simple, versatile, and allows biologists and bioengineers to manipulate regions for cell culture adhesion and growth. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:243–248, 2018  相似文献   

4.
Technologies for fabricating functional tissue architectures by patterning cells precisely are highly desirable for tissue engineering. Although several cell patterning methods such as microcontact printing and lithography have been developed, these methods require specialized surfaces to be used as substrates, the fabrication of which is time consuming. In the present study, we demonstrated a simple and rapid cell patterning technique, using magnetite nanoparticles and magnetic force, which enables us to allocate cells on arbitrary surfaces. Magnetite cationic liposomes (MCLs) developed in our previous study were used to magnetically label the target cells. When steel plates placed on a magnet were positioned under a cell culture surface, the magnetically labeled cells lined on the surface where the steel plate was positioned. Patterned lines of single cells were achieved by adjusting the number of cells seeded, and complex cell patterns (curved, parallel, or crossing patterns) were successfully fabricated. Since cell patterning using magnetic force may not limit the property of culture surfaces, human umbilical vein endothelial cells (HUVECs) were patterned on Matrigel, thereby forming patterned capillaries. These results suggest that the novel cell patterning methodology, which uses MCLs, is a promising approach for tissue engineering and studying cell-cell interactions in vitro.  相似文献   

5.
We describe here a new in vitro protocol for structuring cardiac cell cultures to mimic important aspects of the in vivo ventricular myocardial phenotype by controlling the location and mechanical environment of cultured cells. Microlithography is used to engineer microstructured silicon metal wafers. Those are used to fabricate either microgrooved silicone membranes or silicone molds for microfluidic application of extracellular matrix proteins onto elastic membranes (involving flow control at micrometer resolution). The physically or microfluidically structured membranes serve as a cell culture growth substrate that supports cell alignment and allows the application of stretch. The latter is achieved with a stretching device that can deliver isotropic or anisotropic stretch. Neonatal ventricular cardiomyocytes, grown on these micropatterned membranes, develop an in vivo-like morphology with regular sarcomeric patterns. The entire process from fabrication of the micropatterned silicon metal wafers to casting of silicone molds, microfluidic patterning and cell isolation and seeding takes approximately 7 days.  相似文献   

6.
A method for protein and cell patterning on polyelectrolyte-coated surfaces using simple micromolding in capillaries (MIMIC) is described. MIMIC produced two distinctive regions. One contained polyethylene glycol (PEG) microstructures fabricated using photopolymerization that provided physical, chemical, and biological barriers to the nonspecific binding of proteins, bacteria, and fibroblast cells. The second region was the polyelectrolyte (PEL) coated surface that promoted protein and cell immobilization.

The difference in surface functionality between the PEL region and background PEG microstructures resulted in simple patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin, E. coli expressing green fluorescence protein (GFP), and fibroblast cells were successfully bound to the exposed PEL surfaces at micron scale. Compared with the simple adsorption of protein, fluorescence intensity was dramatically improved (by about six-fold) on the PEL-modified surfaces. Although animal cell patterning is prerequisite for adhesive protein layer to survive on desired area, the PEL surface without adhesive proteins provides affordable microenvironment for cells.

The simple preparation of functionalized surface but universal platform can be applied to various biomolecules such as proteins, bacteria, and cells.  相似文献   


7.
This article presents a new technique to fabricate patterns of functional molecules surrounded by a coating of the inert poly(ethylene glycol) (PEG) on glass slides for applications in protein microarray technology. The chief advantages of this technique are that it is based entirely on standard lithography processes, makes use of glass slides employing surface chemistries that are standard in the microarray community, and has the potential to massively scale up the density of microarray spots. It is shown that proteins and antibodies can be made to self-assemble on the functional patterns in a microarray format, with the PEG coating acting as an effective passivating agent to prevent non-specific protein adsorption. Various standard surface chemistries such as aldehyde, epoxy and amine are explored for the functional layer, and it is conclusively demonstrated that only an amine-terminated surface satisfies all the process constraints imposed by the lithography process sequence. The effectiveness of this microarray technology is demonstrated by patterning fluorescent streptavidin and a fluorescent secondary antibody using the well-known and highly specific interaction between biotin and streptavidin.  相似文献   

8.
We developed a surface micropatterning technique to control the cell adhesion and protein adsorption. This micropatterned array system was fabricated by a photolithography technique and self-assembled monolayer (SAM) deposition. It was hypothesized that the wettability and functional terminal group would regulate cell adhesion and protein adsorption. To demonstrate this hypothesis, glass-based micropatterned arrays with various functional terminal groups, such as amine (NH(2)) group (3-aminopropyl-triethoxysilane, APT), methyl (CH(3)) group (trichlorovinylsilane, TVS), and fluorocarbon (CF(3)) group (trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, FOTS), were used. The contact angle was measured to determine the hydrophilic and hydrophobic properties of materials, demonstrating that TVS and FOTS were hydrophobic, whereas APTs were relatively hydrophilic. The cell adhesion was significantly affected by the wettability, showing that the cells were not adhered to hydrophobic surfaces, such as TVS and FOTS. Thus, the cells were selectively adhered to glass substrates within TVS- and FOTS-based micropatterned arrays. However, the cells were randomly adhered to APTs-based micropatterned arrays due to hydrophilic property of APTs. Furthermore, the protein adsorption of the SAM-based micropatterned array was analyzed, showing that the protein was more absorbed to the TVS surface. The surface functional terminal group enabled the control of protein adsorption. Therefore, this SAM-based micropatterned array system enabled the control of cell adhesion and protein adsorption and could be a potentially powerful tool for regulating the cell-cell interactions in a well-defined microenvironment.  相似文献   

9.
The precise roles of various surface molecules in the attachment of Streptococcus pyogenes to host epithelia are currently unclear. A flow cytometry assay that facilitates the analysis of the kinetics of S. pyogenes adhesion to epithelial cells was developed. Dose- and time-dependent adhesion isotherms with both buccal epithelial cells (BECs) and Hep-2 cells as substrata were obtained. Although binding equilibrium is reached within 2 h on both cell types, saturation of binding sites on BECs is not achieved within a wide range of experimental conditions. This indicates a high degree of non-specific attachment to that cell type. Since no rinsing step is necessary when using flow cytometry to analyze adhesion, low-affinity associations were observable. This was confirmed by determining bacterial desorption rates early and late in the adsorption process. Binding irregularities were also easily detected since the cytometer records and displays data for up to 10,000 epithelial cells per time point. It is proposed to use this methodology to assign roles to particular surface molecules/characteristics during distinct phases of adhesion.  相似文献   

10.
Surface chemistry is one of the main factors that contributes to the longevity and compliance of cell patterning. Two to three weeks are required for dissociated, embryonic rat neuronal cultures to mature to the point that they regularly produce spontaneous and evoked responses. Though proper surface chemistry can be achieved through the use of covalent protein attachment, often it is not maintainable for the time periods necessary to study neuronal growth. Here we report a new and effective covalent linking approach using (3-glycidoxypropyl) trimethoxysilane (3-GPS) for creating long term neuronal patterns. Micrometer scale patterns of cell adhesive proteins were formed using microstamping; hippocampal neurons, cultured up to 1 month, followed those patterns. Cells did not grow on unmodified 3-GPS surfaces, producing non-permissive regions for the long-term cell patterning. Patterned neuronal networks were formed on two different types of MEA (polyimide or silicon nitride insulation) and maintained for 3 weeks. Even though the 3-GPS layer increased the impedance of metal electrodes by a factor of 2-3, final impedance levels were low enough that low noise extracellular recordings were achievable. Spontaneous neural activity was recorded as early as 10 days in vitro. Neural recording and stimulation were readily achieved from these networks. Our results showed that 3-GPS could be used on surfaces to immobilize biomolecules for a variety of neural engineering applications.  相似文献   

11.
A variety of agonists including phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Here we report that signals provided by extracellular matrix proteins (ECM) augment the PE-induced hypertrophic response of cardiomyocytes and provide evidence that ECM-dependent signaling is mediated in part by the protein tyrosine kinase, focal adhesion kinase (FAK). Addition of PE to cultured neonatal cardiomyocytes stimulated sarcomeric organization, increased cell size, and induced atrial natriuretic factor in cardiomyocytes plated on the ECM protein laminin or fibronectin. In contrast, cardiomyocytes plated on the non-adhesive substrate gelatin exhibited a reduced capacity to undergo these PE-stimulated hypertrophic changes. In cardiomyocytes cultured on ECM, PE stimulated a rapid increase in tyrosine phosphorylation of focal adhesion proteins including FAK, paxillin, and p130 Crk-associated substrate and subsequent formation of peripheral focal complexes. Inhibition of the PE-induced hypertrophic response by genistein and herbimycin-A indicated a requirement for protein tyrosine kinases in PE signaling. To determine whether activation of FAK is required for PE-induced hypertrophy, a dominant-interfering mutant form of FAK, termed FRNK (FAK-related non-kinase), was ectopically expressed in cardiomyocytes using a replication-defective adenovirus expression system. FRNK expression attenuated PE-stimulated hypertrophy as assessed by cell size, sarcomeric organization, and induction of atrial natriuretic factor. These data indicate that the signal transduction pathways leading to cardiomyocyte hypertrophy are strongly influenced by and/or dependent upon an integrin-mediated signaling process requiring FAK.  相似文献   

12.
The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures 相似文献   

13.
14.
Clean silicon and gold-patterned silicon platforms were modified with methoxy-polyethylene glycol (M-PEG silane) via a self-assembly technique, which significantly improved their plasma protein resistance capability and cell patterning selectivity. Fibrinogen and IgG were used as model plasma proteins to study the efficacy of PEG layers in resisting protein adsorption. Selective cell patterning on the gold regions of a gold-patterned silicon substrate and tissue compatibility were studied with macrophage and fibroblast cells. The research also revealed how the presence of gold electrodes on a silicon substrate would influence the cell patterning selectivity. Our experimental results showed that the PEG-modified silicon surfaces had a high resistivity to protein and cell attachment and that the PEG-modified gold-patterned silicon surfaces nearly completely eliminated the protein adsorption and cell attachment on silicon. This study provides a new approach to developing biocompatible surfaces for silicon-based BioMEMS devices, particularly for biosensors where a metal-insulator format must be enforced.  相似文献   

15.
The patterning of biomolecules on semiconducting surfaces is of central importance in the fabrication of novel biodevices. In the process of patterning, it is required that the biomolecule preserves its properties and the substrate is not damaged by the chemicals, the temperatures or the patterning beams involved in the procedure. Recently, both DUV and electron beam microlithography have been used in order to deposit protein layers in predefined patterns. Various approaches have been used, some involving photoresists. Contrast between exposed and unexposed regions, resolution of adjacent features and sensitivity to dose variation, are the key issues. The approach followed in this paper consists of a direct patterning of a biotin layer, deposited on an amino-silane primed silicon nitride surface, using an electron beam. After irradiation, the surface is covered by bovine serum albumin (BSA), which acts as a blocking material to protect the exposed areas from streptavidin adsorption. Using 20 keV e-beam energy and doses, in the range 100-1000 microC/cm(2), submicrometer dense lines of 1-microm pitch have been obtained. The results have been tested by fluorescence optical microscopy.  相似文献   

16.
Surface reactivity of bioactive ceramics contributes in accelerating bone healing by anchoring osteoblast cells and the connection of the surrounding bone tissues. The presence of silicon (Si) in many biocompatible and bioactive materials has been shown to improve osteoblast cell adhesion, proliferation and bone regeneration due to its role in the mineralisation process around implants. In this study, the effects of Si-biphasic calcium phosphate (Si-BCP) on bioactivity and adhesion of human osteoblast (hFOB) as an in vitro model have been investigated. Si-BCP was synthesised using calcium hydroxide (Ca(OH)2) and phosphoric acid (H3PO4) via wet synthesis technique at Ca/P ratio 1.60 of material precursors. SiO2 at 3 wt% based on total precursors was added into apatite slurry before proceeding with the spray drying process. Apatite powder derived from the spray drying process was pressed into discs with Ø 10 mm. Finally, the discs were sintered at atmospheric condition to obtain biphasic hydroxyapatite (HA) and tricalcium phosphate (TCP) peaks simultaneously and examined by XRD, AFM and SEM for its bioactivity evaluation. In vitro cell viability of L929 fibroblast and adhesion of hFOB cell were investigated via AlamarBlue® (AB) assay and SEM respectively. All results were compared with BCP without Si substitution. Results showed that the presence of Si affected the material’s surface and morphology, cell proliferation and cell adhesion. AFM and SEM of Si-BCP revealed a rougher surface compared to BCP. Bioactivity in simulated body fluid (SBF) was characterised by pH, weight gain and apatite mineralisation on the sample surface whereby the changes in surface morphology were evaluated using SEM. Immersion in SBF up to 21 days indicated significant changes in pH, weight gain and apatite formation. Cell viability has demonstrated no cytotoxic effect and denoted that Si-BCP promoted good initial cell adhesion and proliferation. These results suggest that Si-BCP’s surface roughness (164 nm) was significantly higher than BCP (88 nm), thus enhancing the adhesion and proliferation of the osteoblast.  相似文献   

17.
Bacterial infection of implants and prosthetic devices is one of the most common causes of implant failure. The nanostructured surface of biocompatible materials strongly influences the adhesion and proliferation of mammalian cells on solid substrates. The observation of this phenomenon has led to an increased effort to develop new strategies to prevent bacterial adhesion and biofilm formation, primarily through nanoengineering the topology of the materials used in implantable devices. While several studies have demonstrated the influence of nanoscale surface morphology on prokaryotic cell attachment, none have provided a quantitative understanding of this phenomenon. Using supersonic cluster beam deposition, we produced nanostructured titania thin films with controlled and reproducible nanoscale morphology respectively. We characterized the surface morphology; composition and wettability by means of atomic force microscopy, X-ray photoemission spectroscopy and contact angle measurements. We studied how protein adsorption is influenced by the physico-chemical surface parameters. Lastly, we characterized Escherichia coli and Staphylococcus aureus adhesion on nanostructured titania surfaces. Our results show that the increase in surface pore aspect ratio and volume, related to the increase of surface roughness, improves protein adsorption, which in turn downplays bacterial adhesion and biofilm formation. As roughness increases up to about 20 nm, bacterial adhesion and biofilm formation are enhanced; the further increase of roughness causes a significant decrease of bacterial adhesion and inhibits biofilm formation. We interpret the observed trend in bacterial adhesion as the combined effect of passivation and flattening effects induced by morphology-dependent protein adsorption. Our findings demonstrate that bacterial adhesion and biofilm formation on nanostructured titanium oxide surfaces are significantly influenced by nanoscale morphological features. The quantitative information, provided by this study about the relation between surface nanoscale morphology and bacterial adhesion points towards the rational design of implant surfaces that control or inhibit bacterial adhesion and biofilm formation.  相似文献   

18.
The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields.Despite extensive progress,the ability to control the cell-surface interaction is complicated by the complexity in the physiochemical features ofbioactive surfaces.In particular,the manifestation of special wettability rendered by the combination of surface roughness and surface chemistry further enriches the cell-surface interaction.Herein we investigated the cell adhesion behaviors of Circulating Tumor Cells (CTCs) on topographically patterned but chemically homogeneous surfaces.Hamessing the distinctive cell adhesion on surfaces with different topography,we further explored the feasibility of controlled cell patterning using periodic lattices of alternative topographies.We envision that our method provides a designer's toolbox to manage the extracellular environment.  相似文献   

19.
Adhesion of erythrocytes infected with the malaria parasite Plasmodium falciparum to human host receptors is a process associated with severe malarial pathology. A number of in vitro cell lines are available as models for these adhesive processes, including Chinese hamster ovary (CHO) cells which express the placental adhesion receptor chondroitin-4-sulphate (CSA) on their surface. CHO-745 cells, a glycosaminoglycan-negative mutant CHO cell line lacking CSA and other reported P. falciparum adhesion receptors, are often used for recombinant expression of host receptors and for receptor binding studies. In this study we show that P. falciparum-infected erythrocytes can be easily selected for adhesion to an endogenous receptor on the surface of CHO-745 cells, bringing into question the validity of using these cells as a tool for P. falciparum adhesin expression studies. The adhesive interaction between CHO-745 cells and parasitized erythrocytes described here is not mediated by the known P. falciparum adhesion receptors CSA, CD36, or ICAM-1. However, we found that CHO-745-selected parasitized erythrocytes bind normal human IgM and that adhesion to CHO-745 cells is inhibited by protein A in the presence of serum, but not in its absence, indicating a non-specific inhibitory effect. Thus, protein A, which has been used as an inhibitor for a recently described interaction between infected erythrocytes and the placenta, may not be an appropriate in vitro inhibitor for understanding in vivo adhesive interactions.  相似文献   

20.
Bio-inspired climbing robots relying on adhesion systems are believed to become essential tools for several industrial applications in the near future. In recent years, research has mainly focused on modeling micro-scale adhesion phenomena; a macro-scale adhesion model has however to be developed for the design of macro-scale systems. In this paper a macro-model of adhesion suitable for real-time applications is presented; it relies on a continuous representation of adhesion. An extension of the von Mises criterion is proposed as failure adhesion criterion in order to estimate the occurrence of detachment at any point of the contacting surface. An experimental set up has been designed in order to define the parameters of the model. A semi-automatic process has been developed to ensure repeatability and accuracy of the results. Polydimethylsiloxane (PDMS), which has revealed promising adhesive features for robotic use, has been used during the experimental phase. The macro-model of adhesion has been implemented in a multi-body dynamics environment based on Open Dynamics Engine (ODE) to simulate a spider-inspired robot. Simulations based on this model are suitable to represent the behaviour of climbing robots and also to optimize their design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号