首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 8-methoxypsoralen (8-MOP) and long-wave ultraviolet irradiation (UVA) on cell killing and mutation induction was studied in V-79 Chinese hamster cells. No effect was observed after treatment with 8-MOP alone (50 μg/ml, 4 h), UVA alone (9000 J/m2), or 8-MOP metabolized by rat-livermicrosomes. Combined treatment with 8-MOP and UVA induced both cell killing and mutation. This was also observed under conditions approaching patient treatment with PUVA photochemotherapy with respect to the concentration of 8-MOP in the skin and the amount of UVA received by the epidermal cells. A simple relation proved to apply for mutation induction under different treatment conditions: 5.5 × 10−8 per J/m2 per μg 8-MOP/ml. On this basis the mutation induction in dividing cells per session of PUVA-photochemotherapy amounts to 12.4 × 10−5, which is probably an over-estimation.  相似文献   

2.
The photobiological effects of two monofunctional pyridopsoralens (PPs), pyrido[3,4-c]psoralen and pyrido[3,4-c]-7-methylpsoralen were studied and compared to those of 3-carbethoxypsoralen (3-CPs) and 8-methoxypsoralen (8-MOP) in a haploid wild-type strain of yeast (Saccharomyces cerevisiae). The capacity of PPs to photoinduce lethal effects in the presence of 365-nm radiation was not only higher than that of the monofunctional compound 3-CPs, but also higher than that of the bifunctional compound 8-MOP. This activity was apparently independent of oxygen, and it was found that it was probably due to the induction of monoadducts in DNA. A high effectiveness of PPs on the induction of cytoplasmic 'petite' mutations was observed suggesting a high photoaffinity towards mitochondrial DNA. In contrast to 8-MOP, the strong cell killing activity of PPs was not accompanied by a strong inducing effect on nuclear mutations (HIS+ reversions or canR forward mutations). For these endpoints, PPs were less effective per unit dose of 365-nm radiation and also less efficient per viable cell than 8-MOP. From this, it appears that the lesions photoinduced by the former compounds show a more lethal than (nuclear) mutagenic potential. Furthermore, the fact that PPs were even less mutagenic (nuclear) per viable cell than the monofunctional compound 3-CPs suggests that the activity of these agents may differ in frequency and nature of lesions induced. The photobiological activity of PPs in haploid yeast appears to be in line with the recent proposition for their use in photochemotherapy.  相似文献   

3.
Aiming to decrease the acute side effects and genotoxic hazards of PUVA, pyrido (3,4-C) psoralen (PP) and 7-methyl pyrido (3,4-C) psoralen (MPP) were synthesized and studied. Their UVA maximum absorption lies at 325 and 330 nm, respectively. Their photostability is comparable to that of 8-MOP. They complex to DNA in the dark, and, in the presence of UVA, produce only monoadditions to DNA, as shown by fluorescence and DNA denaturation-renaturation studies. In diploid eukaryotic yeast they are more effective than 8-MOP for the induction of lethal effects and mitochondrial damage. Their mutagenic activity per unit dose of UVA is in the same range as that of 8-MOP. However, per viable cell they are clearly less mutagenic than 8-MOP. This difference is also observed for recombinogenic activity. No oxygen effect is observed. In mammalian cells the following ranges of effectiveness are found: inhibition of DNA synthesis in human fibroblasts: MPP greater than PP greater than 8-MOP; mutagenic activity in V79 Chinese hamster cells: MPP greater than PP greater than 8-MOP; cell transforming ability in C3H embryonic mouse cells: MPP greater than 8-MOP greater than PP as a function of UVA dose, and: 8-MOP greater than MPP greater than PP as a function of survival; induction of sister chromatic exchanges (SCE) per unit dose: MPP greater than PP greater than 8-MOP in the linear part of the induction curve, and : 8-MOP greater than PP greater than MPP at the maximum level of SCE obtained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The induction of lethal effects and 6-thioguanine-resistant (6-TGr) mutants were studied in Chinese hamster V79 cells after treatment with the two bifunctional furocoumarins 5- and 8-methoxypsoralens (5-MOP, 8-MOP) in the presence of 365-nm radiation (UVA). The in vivo DNA-photobinding capacity of these two compounds was measured and in parallel the cross-linking capacities of 5-MOP and 8-MOP were determined using the alkaline elution technique. The results show that 5-MOP plus UVA was about 2.5 times more effective than 8-MOP plus UVA for inhibiting cell survival and for inducing the same frequency of 6-TGr mutants (10(-4]. The total number of photoinduced lesions by 5-MOP plus UVA was about 6 times higher than that induced by 8-MOP plus UVA. However, the cross-linking capacities of 5-MOP and 8-MOP were found to be within the same range at equal doses of UVA. At equal number of DNA photoadducts produced, the lesions induced by 5-MOP appeared to be less genetically active than those induced by 8-MOP. The apparently weaker genotoxicity of 5-MOP-induced lesions is likely to be due to the induction of a lower proportion of cross-links by 5-MOP at a given number of photoadducts.  相似文献   

5.
8-methoxypsoralen (8-MOP), activated upon exposure to long-wavelength ultraviolet radiation, is used therapeutically to treat the diseased blood cells of cutaneous T-cell lymphoma patients. The factors responsible for the efficacy of this therapy are reviewed. Primary among these are the plasma level of 8-MOP at the time of irradiation and the effective dose of UVA. 8-MOP plasma levels determined in a series of six patients demonstrated that the drug is absorbed at a highly variable rate (122 ng/ml +/- 67). A new liquid form of 8-MOP is absorbed with a modest increase in plasma levels (170 ng/ml) but with no improvement in the variability (+/- 163). An examination of the dose-response relationship between 8-MOP concentration and UVA dose indicated that properties such as 8-MOP photoadduct formation and PHA response are proportional to the combined doses of these two factors. A new molecular target for 8-MOP photomodification, cell membrane DNA, is described.  相似文献   

6.
Diethyl sulfate (DES), a monofunctional alkylating agent, induces mutations and chromosomal aberrations in many different organisms and cell systems, including dominant-lethal mutations in male mice. However, until now it could not be demonstrated that DES induces specific-locus mutations in mice. This observation would contradict the close correlation observed between the induction of dominant-lethal mutations and specific-locus mutations in mice with other chemicals. DES induces dominant-lethal and specific-locus mutations in spermatozoa and late spermatids of mice. The mutation frequency for dominant-lethal mutations is dose-dependent, while for specific-locus mutations it is independent of the dose. In the mating interval 5-8 days post-treatment the mutation frequency for 200 mg/kg DES is 17.0 X 10(-5) and for 300 mg/kg 7.5 X 10(-5) mutations per locus. The dose-dependent increase of dominant-lethal mutations probably reduced the chance of recovering specific-locus mutations. The importance of these findings for mutagenicity testing is discussed.  相似文献   

7.
Accurate dosimetry for chemical mutagens is extremely difficult, and precise manipulation of the frequency of a particular lesion is ordinarily impossible. With 8-MOP plus UVA, however, both are possible because 8-MOP, when photoactivated by one photon of UVA, forms monoadducts whilst crosslinks are formed only if a second photon of light photoactivates the monoadducts. If 8-MOP molecules that are unreacted after a UVA exposure are removed from cells by washing, the effect of a subsequent UVA irradiation can be attributed only to the conversion of monoadducts to DNA interstrand crosslinks. Using this experimental procedure and L5178Y mouse lymphoma cells, we have shown that DNA interstrand crosslinks are at least 10-fold more effective at causing both sister-chromatid exchanges and chromosomal aberrations than are monoadducts. In contrast, crosslinks are no more effective than monoadducts in mutation induction. These experiments identify directly for the first time that a particular chemically induced lesion, DNA interstrand crosslinks, can, like thymine dimers, cause chromosomal aberrations and sister-chromatid exchanges. The results also show that sister-chromatid exchanges can be induced independently of mutations.  相似文献   

8.
The dosage-response curve for EMS was determined with dose measured as ethylations of DNA per sperm cell, and response measured as the relative frequency of sex-linked recessive lethals induced in sperm cells of Drosophila melanogaster. Dose can be converted to ethylations per nucleotide of DNA by dividing ethylations of DNA per sperm cell by 3 X 10(8) nucleotides per sperm cell. Adult males were exposed to equal amounts of either [3H]EMS for determining dose or nonlabeled EMS for determining mutational response. By feeding EMS for 24 h in a concentration of 25 mM, a high dose of 1.4 X 10(-2) ethylations per nucleotide was observed. With 1.4% of the nucleotides ethylated, 57% of the X-chromosomes were hemizygously viable; therefore, ethylation per se is not very efficient in inducing mutations. The relative frequency of mutations increased linearly with the dose from a dose of 2.1 X 10(-4) to 1.4 X 10(-2) ethylations per nucleotide. No threshold was apparent, and the statistical limits of the exponent, 1.0 +/- 0.1, excluded an exponent as high as 1.2. This linear relation suggests no change in mechanism of mutagenesis occurs from low to high dose in Drosophila. A nonlinear relation was found between exposure and dose; when exposure was increased by a factor of 250 (from 0.1 to 25 mM EMS in the feeding medium) dose was increased by a factor of only 68. By extrapolating down from our lowest dose of 2.1 X 10(-4) ethylations per nucleotide with an observed frequency of 0.55% +/- 0.08% sex-linked recessive lethals, we estimate the doubling dose for sex-linked recessive lethals to be 4 X 10(-5) ethylations per nucleotide.  相似文献   

9.
A large UVA dose by itself induces lethal damage revealed in some repair-deficient strains of Saccharomyces cerevisiae. Following photoaddition of a monofunctional psoralen derivative, 3-carbethoxypsoralen, an extra killing effect is observed by applying a second high UVA dose, in conditions where a fraction of 8-methoxypsoralen (8-MOP) plus UVA-induced monoadducts are transformed into DNA cross-links. In an excision-repair-deficient context, the bypass of 8-MOP plus UVA-induced monoadducts is under the control of the RAD6+ gene product. However, when other steps of the mutagenic pathway are blocked by the rad18-2 or the pso1-1 mutations, bypass occurs. This is also true when in excision-deficient strains the recombinogenic pathway is blocked by the rad52-1 mutation. The recombinogenic pathway may be an alternative to the mutagenic pathway for bypass of monoadducts. The repair of the lesions induced by a second UVA dose applied after a first treatment by 8-MOP plus UVA [i.e. cross-links and other putative lesion(s)] is controlled by at least the RAD2+, RAD6+, RAD52+, PSO2+ and PSO1+ gene products. The role of the pathways involved is discussed according to the nature of the secondarily induced lesions.  相似文献   

10.
The photomutagenicity of the furochromone khellin was tested in Ames Salmonella strains using 8-methoxypsoralen (8-MOP) and 4,5', 8-trimethylpsoralen (TMP) as positive controls. When khellin was assayed with strain TA1537, mutation induction was not detectable; in the same strain, an equitoxic dose (52-56% level of survival) of TMP (used at a concentration 12-fold lower than khellin and with a UVA dose 83-fold lower than that used with khellin) yielded an increase in revertants/plate 3-fold above the spontaneous background. In strain TA102, khellin plus UVA treatment yielded a 2-fold increase in revertants/plate above the spontaneous background (79% survival). 8-MOP, however, used at a concentration 8-fold lower than khellin with a UVA dose 13-fold lower than khellin, yielded an increase in revertants/plate about 14-fold above background (66% survival) in the same strain. These data show that khellin has a weak photomutagenic potential and, along with the previously reported low photogenotoxic potential in eukaryotic cell systems, support the notion that khellin may be safer than bifunctional psoralens for clinical use.  相似文献   

11.
Essential oils (EOs) extracted from medicinal plants such as Origanum compactum, Artemisia herba alba and Cinnamomum camphora are known for their beneficial effects in humans. The present study was undertaken to investigate their possible antigenotoxic effects in an eukaryotic cell system, the yeast Saccharomyces cerevisiae. The EOs alone showed some cytotoxicity and cytoplasmic petite mutations, i.e. mitochondrial damage, but they were unable to induce nuclear genetic events. In combination with exposures to nuclear mutagens such as 254-nm UVC radiation, 8-methoxypsoralen (8-MOP) plus UVA radiation and methylmethane sulfonate (MMS), treatments with these EOs produced a striking increase in the amount of cytoplasmic petite mutations but caused a significant reduction in revertants and mitotic gene convertants induced among survivors of the diploid tester strain D7. In a corresponding rho0 strain, the level of nuclear genetic events induced by the nuclear mutagens UVC and 8-MOP plus UVA resulted in the same reduced level as the combined treatments with the EOs. This clearly suggests a close relationship between the enhancement of cytoplasmic petites (mitochondrial damage) in the presence of the EOs and the reduction of nuclear genetic events induced by UVC or 8-MOP plus UVA. After MMS plus EO treatment, induction of these latter events was comparable at least per surviving fraction in wildtype and rho0 cells, and apparently less dependent on cytoplasmic petite induction. Combined treatments with MMS and EOs clearly triggered switching towards late apoptosis/necrosis indicating an involvement of this phenomenon in EO-induced cell killing and concomitant decreases in nuclear genetic events. After UVC and 8-MOP plus UVA plus EO treatments, little apoptosis and necrosis were observed. The antigenotoxic effects of the EOs appeared to be predominantly linked to the induction of mitochondrial dysfunction.  相似文献   

12.
The photobinding to DNA of tritiated 7-methylpyrido[3,4-c]psoralen (MPP), a recently synthesized monofunctional compound of therapeutical interest, and of 8-methoxypsoralen (8-MOP) was determined in cultured normal human fibroblasts. Employing compounds at 10(-6) M, MPP photobinds approximately 11 times more efficiently than 8-MOP: one molecule is fixed respectively per 7.5 X 10(4) or 8.1 X 10(5) base pairs/kJ . m-2 of 365-nm radiation (UVA). Removal of bound material from DNA is slow and limited in 48-72 h of post-treatment incubation to 30-40% of initial adducts formed by MPP and to 50-60% of those of 8-MOP. For equivalent photobinding MPP and 8-MOP induce similar inhibitions of DNA synthesis. However, the recovery of DNA synthesis during post-treatment incubation is lower after photoaddition of MPP than after that of 8-MOP. MPP also exerts a much higher lethal effect than 8-MOP: one lethal hit corresponds to about 4400 and to 19,900 adducts per cell respectively. Alkaline elution experiments confirmed the monofunctional nature of MPP and indicated that in MPP-damaged cells DNA breaks accumulate with time of post-treatment incubation. In contrast, after photoaddition of 3-carbethoxypsoralen (3-CPs), another monofunctional furocoumarin, or irradiation with 254-nm UV, DNA breaks are induced only transiently. In 8-MOP-treated cells, DNA cross-links appear to be partially repaired. In conclusion, MPP monoadducts turn out to constitute more cytotoxic lesions than 8-MOP mono- and bi-adducts.  相似文献   

13.
Guided by the phenomena of photo-augmentation and photo-recovery, which have been described with respect to the induction of erythema in human skin, experiments were undertaken with cultured mammalian cells to study whether irradiation with far- and near-ultraviolet radiation results in an interaction at the cellular level with respect to cell survival and induction of mutations. Evidence was found for both photo-augmentation and photo-recovery. Photo-augmentation (more than an additive effect) was observed for cell survival when the long-wave ultraviolet irradiation (UVA) preceded the short-wave ultraviolet irradiation (UVB). Photo-recovery (less than an additive effect) was observed for cell survival if the UVA was given after or simultaneously with the UVB. The latter effect, however, was strongly influenced by dose: doses of UVA higher than 20 000 J/m2 no longer lead to photo-recovery in cell survival. For mutation induction, reduction in mutant frequency appears indicated for both combinations of UVA and UVB and for high and low doses of UVA.  相似文献   

14.
After fractionation of rabbit bone marrow into dividing (early) and non-dividing (late) erythroid cells, the adenylate cyclase activity of membrane ghosts was assayed in the presence of guanine nucleotides ((GTP and its analogue p[NH]ppG (guanosine 5'-[beta, gamma-imido]triphosphate))), the beta-adrenergic agonist L-isoprenaline (L-isoproterenol) and the antagonist L-propranolol. Both GTP and p[NH]ppG increased the adenylate cyclase activity of early and late erythroblasts, whereas the stimulating effect of the beta-adrenergic drug L-isoprenaline was limited to the immature dividing bone-marrow cells. The effect of L-isoprenaline was completely inhibited by the antagonist L-propranolol, confirming that the response was due to stimulation of beta-adrenergic receptors on the plasma membrane. The lack of response of non-dividing erythroblasts to beta-adrenergic stimuli is not due to loss of beta-receptors, since both dividing and non-dividing cells bind the selective ligand [125I]iodohydroxybenzylpindolol with almost equal affinities, the apparent dissociation constants, Kd, being 0.91 X 10(-8)M and 1.0 X 10(-8) M respectively. The number of beta-adrenergic receptors per cell was 2-fold higher in the dividing cells. No significant change in binding affinity for GTP and p[NH]ppG during erythroblast development was observed: the dissociation constants of both guanine nucleotides were almost identical with early and late erythroblast membrane preparations [2-3 (X 10(-7) M]. With dividing cells, however, in the presence of L-isoprenaline the dissociation constants of GTP and p[NH]ppG were lower (6 X 10(-8) M). The dose-response curves for isoprenaline competition in binding of [125I]iodohydroxybenzylpindolol by dividing cells showed that the EC50 (effective concentration for half maximum activity) value for isoprenaline was higher in the presence of p[NH]ppG. With non-dividing cells the EC50 value for isoprenaline was equal in the presence and in the absence of p[NH]ppG and similar to that observed with dividing-cell membranes in the presence of the nucleotide. Thus differentiation of rabbit bone-marrow erythroid cells seems to be accompanied by uncoupling of the beta-adrenergic receptors from the adenylate cyclase catalytic protein as well as by a decrease in the number of receptors per cell, but not by changes in the catecholamine and guanine-nucleotide-binding affinities.  相似文献   

15.
Ultraviolet A (UVA) radiation is implicated in the etiology of human skin cancer. However, the underlying mechanism of carcinogenicity for UVA is not fully delineated. A mutagenic role for UVA has been suggested, which involves activation of endogenous photosensitizers generating oxidative DNA damage. We investigated the mutagenicity of UVA alone and in combination with delta-aminolevulinic acid (delta-ALA), a precursor of the intracellular photosensitizers porphyrins, in transgenic Big Blue mouse embryonic fibroblasts. A significant generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), a typical promutagenic oxidative DNA lesion, was observed in cells treated with a combination of delta-ALA (1 mM) and UVA (0.06 J/cm(2)) as quantified by high-pressure liquid chromatography-tandem mass spectrometry (p < 0.001; relative to the control). The steady-state level of 8-oxo-dG, however, remained unchanged in cells irradiated with UVA or treated with delta-ALA alone. Other photolesions including cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts were not detectable in cells treated with delta-ALA and/or irradiated with UVA as determined by terminal transferase-dependent polymerase chain reaction assay. Mutation analyses of the cII transgene in cells treated with a combination of delta-ALA and UVA showed an approximately 3-fold increase in mutant frequency relative to the control (p < 0.008), as well as a unique induced mutation spectrum as established by DNA sequence analysis (p < 0.005; 95% CI, 0.002-0.009). No mutagenic effects were observed in cells irradiated with UVA or treated with delta-ALA alone. The spectrum of mutations produced by delta-ALA plus UVA was characterized by a significantly increased frequency of G --> T transversions (p < 0.0003; relative to the control), which are the hallmark mutations induced by 8-oxo-dG. Notably, the 8-oxo-dG-mediated mutagenicity of UVA plus delta-ALA is similar to that established previously for UVA alone at a mutagenic dose of 18 J/cm(2). We conclude that, in the presence of exogenous photosensitizers, UVA at a nonmutagenic dose induces mutations through the same mechanism as does a mutagenic dose of UVA per se.  相似文献   

16.
Synchronous Chinese hamster ovary cells were irradiated in G1 or S phase. Colony survival in Alpha MEM medium with dialyzed serum was determined with or without 15 mug/ml 8-azaguanine (AG). An expression period of over three generations (multiplicity of 20) was utilized, with expression times ranging from 58 to 114 h. Both G1 and S phase were practically identical in sensitivity to X-ray-induced mutations, with mutant frequency/viable cell/rad ranging from 1 X 10(-7) (75-100 rad) to 8 X 10(-7) (1000 rad). The spontaneous mutation rate, shown by Luria-Delbruck fluctuation analysis, was 5 X 10(-7) per generation. Thirty-three mutants, isolated at random and grown for over 30 generations in the absence of AG, were analyzed for plating efficiency (PE) in different concentrations of AG or in hypoxanthine-aminopterin-thymidine (HAT) medium. Of these, 64% were resistant (PE greater than 0.1) to 7.5 mug/ml AG, 85% to 5.0 mug/ml, and 91% to 3.5 mug/ml. Only 42% showed possible hypoxanthine-phosphoribosyltransferase (hprtase) deficiency as evidenced by HAT sensitivity (PE less than 0.1). Wild type controls exhibited PE's in 3.5 mug/ml AG of less than 0.001 and in HAT of greater than 0.5. Of ten mutants studied, all demonstrated survival response to radiation similar to wild type cells (D0 of approx. 120 rad). For radiation protection standards, the radiation dose required to induce mutations at a rate equal to that occurring spontaneously is called the doubling dose. The doubling dose observed for acute irradiation was about 3 rad and was estimated to be 10-60 rad for chronic irradiation, similar to that often reported for in vivo studies.  相似文献   

17.
The biological activity and specific binding sites of 8-methoxypsoralen (8-MOP) are assayed using two human melanoma cell lines, melanotic SK-Mel 28 and amelanotic C32TG. Long-term (72 hr) treatment with 8-MOP at a concentration of 10(-4)M results in an increase in melanogenesis and a decrease in proliferation, similar in both cell lines. Daily exposure of these cells to ultraviolet A (UVA) irradiation (1.28 mJ/cm(2)) does not enhance the response to the compound. Daily pulse application (30 min daily) of 8-MOP does not promote any response. However, in combination with UVA, 8-MOP pulse treatment becomes as effective as the long-term treatment. A decrease in cell proliferation in the constant presence of 8-MOP is not coupled with apoptosis, since no increase in the number of apoptotic nuclei was observed after the treatment. The flow cytometry indicates that 8-MOP arrests the cells at the G0/G1 phase, irrespective of the presence or absence of UVA light. In view of the lack of epidermal growth factor (EGF) receptors in both cell lines, it is not likely that such an arrest is associated with the down-regulation of EGF receptors by 8-MOP. It is noted that this compound elicits a biphasic cell response, since cell proliferation increases after the first 24-hr treatment, whereas it decreases in the subsequent 48 hr and thereafter. Competition binding assays using 3H-8-MOP disclosed: 1) the specific binding of the compound in both cell lines occurs in the presence or absence of UVA light, and 2) a higher binding rate at low concentrations of the compound is in SK-Mel 28 (72%) rather than C32TG (58%) cells. The competition assays in the presence of UVA suggest a possible occurrence of covalent bindings between psoralen and receptor, as DNA covalent binding accounted to only 3-5% of the total binding in both cell lines.  相似文献   

18.
Sunlight ultraviolet A (UVA) irradiation has been implicated in the etiology of human skin cancer. A genotoxic mode of action for UVA radiation has been suggested that involves photosensitization reactions giving rise to promutagenic DNA lesions. We investigated the mutagenicity of UVA in the lacI transgene in Big Blue mouse embryonic fibroblasts. UVA irradiation of these cells at a physiologically relevant dose of 18J/cm(2) caused a 2.8-fold increase in the lacI mutant frequency relative to control, i.e., 12.12+/-1.84 versus 4.39+/-1.99 x 10(-5) (mean+/-S.D.). DNA sequencing analysis showed that of 100 UVA-induced mutant plaques and 54 spontaneously arisen control plaques, 97 and 51, respectively, contained a minimum of one mutation along the lacI transgene. The vast majority of both induced- and spontaneous mutations were single base substitutions, although less frequently, there were also single and multiple base deletions and insertions, and tandem base substitutions. Detailed mutation spectrometry analysis revealed that G:C-->T:A transversions, the signature mutations of oxidative DNA damage, were significantly induced by UVA irradiation (P<0.003). The absolute frequency of this type of mutations was 7.4-fold increased consequent to UVA irradiation as compared to control (3.38 versus 0.454 x 10(-5); P<0.00001). These findings are in complete agreement with those previously observed in the cII transgene of the same model system, and reaffirm the notion that intracellular photosensitization reactions causing promutagenic oxidative DNA damage are involved in UVA genotoxicity.  相似文献   

19.
The induction of sister-chromatid exchange (SCE) by a photoactivated monofunctional derivative of psoralen, 3-carbethoxypsoralen (3-CPs) was compared with that of the bifunctional compound, 8-methoxypsoralen (8-MOP). Lymphocytes were exposed in vitro to a series of equimolar concentrations of the drugs as well as to increasing doses of long-wave ultraviolet light (UVA) and second-division metaphases examined for SCE. The drugs or UVA per se did not influence the incidence of SCE. However, combination of the drug and UVA exposure resulted in a dose-dependent increase in SCE and such elevation was less pronounced with 3-CPs as compared to 8-MOP. This difference between 3-CPs and 8-MOP could be due to the difference in the types of lesions induced/repaired in DNA.  相似文献   

20.
Activation of psoralens by ultraviolet light irradiation at 308-400 nm (UVA) is used in the photochemical treatment of psoriasis. While the major effect of this activation is the formation of DNA adducts, it was recently demonstrated that psoralens can also bind to specific saturable high affinity cellular receptors, and that this is associated with inhibition of epidermal growth factor (EGF)-receptor binding. In view of these findings, we have examined whether 8-methoxy-psoralen (8-MOP) itself, or in combination with UVA, influences expression of the human EGF-receptor gene ("HER-1") in a human keratinocyte cell line. We have found that 8 MOP alone, and to a lesser extent UVA, induce a striking increase in cellular levels of HER-1 RNA. The combination of 8-MOP with UVA produces less induction of HER-1 RNA than that obtained with 8-MOP alone. We suggest, therefore, that this effect of 8-MOP is not due to DNA damage, but may reflect a separate effect of this compound on receptor-mediated signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号