首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Michigan mottled sculpin (Cottus bairdi) have a lateral-line-mediated prey-capture behaviour that consists of an initial orientation towards the prey, a sequence of approach movements, and a final strike at the prey. This unconditioned behaviour can be elicited from blinded sculpin in the laboratory by both real and artificial (vibrating sphere) prey. In order to visualize what Lake Michigan mottled sculpin might perceive through their lateral line when approaching prey, we have combined anatomical, neurophysiological, behavioural and computational modelling techniques to produce three-dimensional maps of how excitation patterns along the lateral line sensory surface change as sculpin approach a vibrating sphere. Changes in the excitation patterns and the information they contain about source location are consistent with behavioural performance, including the approach pathways taken by sculpin to the sphere, the maximum distances at which approaches can be elicited, distances from which strikes are launched, and strike success. Information content is generally higher for laterally located sources than for frontally located sources and this may explain exceptional performance (e.g. successful strikes from unusually long distances) in response to lateral sources and poor performance (e.g. unsuccessful strikes) to frontal sources.  相似文献   

2.
Synopsis We documented species' distributions, size structure of populations, abundance in mainstem and tributary streams, habitat use, and diets of prickly sculpin, Cottus asper, and coastrange sculpin, C. aleuticus, in the Eel River drainage of California, to determine the processes allowing coexistence of these very similar fishes. We observed prickly sculpins at 43 sites and coastrange sculpins at 34. The species co-occurred at 26 sites. Young-of-year coastrange sculpins were only observed within 42 km of the ocean, but young-of-year prickly sculpins were present throughout the species range. Mean, maximum, and minimum lengths of coastrange sculpins were positively correlated with distance from the ocean but no significant relationships were found for prickly sculpins. Absolute abundance of both species was highest in mainstem habitat (prickly sculpins = 0.6 sculpins m–2 and coastrange sculpins = 0.4 sculpins m–2) . Tributary densities of both species tended to be less than 0.1 sculpins m–2. The species inhabited very similar habitats and had very similar diets. Coastrange sculpin populations in upstream areas were maintained by immigration from downstream areas in contrast with prickly sculpin populations that produced young-of-year fish throughout their range. Densities were probably not high enough for interspecific interactions to be important. The factors limiting the upstream distribution of the species may include high water temperatures, stability of the stream bed, and behavior of the fish. In the past, the range of sculpins within the Eel River drainage probably fluctuated with changing physical conditions. Recent introductions of exotic species that compete with and prey upon sculpins, and ongoing human activities in the drainage could result in major reductions in the distribution and abundance of one or both species.  相似文献   

3.
Information contained in the spatial excitation pattern along arrayed sensors in the lateral line system of Lake Michigan mottled sculpin, as well as other surface-feeding fish and amphibians, is thought to play a fundamental role in guiding prey-orienting behaviors. However, the way in which prey location is encoded by the excitation pattern and used by the nervous system to direct orienting behaviors is largely unknown. In this study, we test the hypothesis that mottled sculpin use excitation peaks (local ‘hot spots’) to determine the somatotopic location of an artificial prey (vibrating sphere/dipole source) along the body surface. Dipole orientation (axis of sphere vibration re: long axis of the fish) is manipulated to produce excitatory peaks in different body locations without changing the actual sphere location. Our results show that orienting accuracy is largely independent of source orientation, but not source distance and that turning directions are not guided by local hot spots in the somatotopic activation pattern of the lateral line.  相似文献   

4.
Lake trout (Salvelinus namaycush) in Toolik Lake are tightly coupled to the benthos, since they have no pelagic forage fishes. Slimy sculpins (Cottus cognatus) are a prey of lake trout and the soft sediment chironomids are an important prey for the sculpin. Our previous work showed that the median size of lake trout in Toolik Lake had decreased significantly between 1977 and 1986, and smaller lake trout are likely to be less effective as sculpin predators. Using our historic data on the slimy sculpin population from 1978, we took advantage of the recent change in the predator community to examine for subsequent changes in the sculpin community. Between 1978 and 1987, the percentage of slimy sculpin caught in the soft sediments has increased (25% to 39.5%). In 1987 there was a significant difference in the mean weight of sculpin caught on different substrates. The mean individual weight of sculpins increased from the nearshore rock area to the rock/soft-sediment interface to the soft sediments. There was no difference in mean individual weight with habitat in 1978. The mean total length at age for slimy sculpins during this time has also increased significantly. We suggest that the risk of predation while foraging in the soft sediments has declined. The increased use of the soft sediment area appears to have contributed to their increased growth, likely due to greater food abundance.  相似文献   

5.
1. We used observational and experimental field studies together with an individual‐based simulation model to demonstrate that behaviours of mottled sculpin (Cottus bairdi) were broadly consistent with the expectations of Giving‐Up Density theory and an Ideal Pre‐emptive Distribution habitat selection model. 2. Specifically we found that: (i) adult mottled sculpin established territories within patches characterised by significantly higher prey densities and prey renewal rates than patches occupied by juveniles or randomly selected patches; (ii) patches abandoned by adult sculpin possessed significantly lower prey densities than newly occupied patches, although this was not true for juveniles; (iii) the observed giving‐up density (GUD) for adult sculpin (i.e. average prey density in patches recently abandoned) increased linearly with increasing fish size up to the average prey density measured in randomly selected patches (i.e. 350 prey items per 0.1 m2) and decreased with increasing sculpin density and (iv) juveniles rapidly shifted their distribution towards the highest quality patches following removal of competitively dominant adult sculpin. 3. These results provide the first evidence of the applicability of GUD theory to a stream‐dwelling organism, and they elucidate the underlying factors influencing juvenile and adult sculpin habitat selection and movement behaviours. Furthermore, optimal patch use, ideal pre‐emptive habitat selection and juvenile ‘floating’ provide behavioural mechanisms linking environmental heterogeneity in the stream benthos to density‐dependent regulation of mottled sculpin populations in this system.  相似文献   

6.
Lake Michigan mottled sculpin, Cottus bairdi, respond to both live and artificial (e.g., vibrating sphere) prey with an unconditioned movement towards the source of vibration, followed by a step‐by‐step approach and final strike at the source. In addition to these well‐studied, whole‐body movements along the horizontal plane of the substrate, sculpin exhibit a little‐studied behavior in which the vertical position of the fish's head can vary from being flush with the substrate to several cm's above the substrate. To test the hypothesis that sculpin can determine source elevation via mechanosensory cues, we measured head elevation of blinded fish as a function of source elevation and distance as fish approached a small (3 mm radius), 50 Hz vibrating sphere. At distances associated with pre‐strike positions (< 2 cm), head elevations were positively correlated with source elevation before but not after pharmacological blocking of the lateral line with CoCl2. These results demonstrate that sculpin are able to determine source elevation using mechanosensory cues alone and that in the absence of visual and olfactory cues, vertical orientation of the head towards the source requires the lateral line system.  相似文献   

7.
Synopsis Resource partitioning was studied in two benthic Lake Michigan fishes, the deepwater sculpin,Myoxocephalus thompsoni, and the slimy sculpin,Cottus cognatus, that exhibit nearly disjunct distributions along a hypolimnetic depth gradient. Fish were collected in an area of sympatry over two 24 h periods. These sculpins exhibited food segregation—slimy sculpins ate primarilyPontoporeia affinis, deepwater sculpins ate bothP. affinis andMysis relicta — and their depth segregation was associated with the reported abundance of these prey. Different feeding behaviors may be responsible for this association, since slimy sculpins consumed intermediate size ranges ofPontoporeia and deepwater sculpins consumedPontoporeia in a pattern similar to the ambient size distribution. Neither fish showed a daily activity cycle, and both appear food-limited.  相似文献   

8.
1. We used direct observation and mark‐recapture techniques to quantify movements by mottled sculpins (Cottus bairdi) in a 1 km segment of Shope Fork in western North Carolina. Our objectives were to: (i) quantify the overall rate of sculpin movement, (ii) assess variation in movement among years, individuals, and sculpin size classes, (iii) relate movement to variation in stream flow and population size structure, and (iv) quantify relationships between movement and individual growth rates. 2. Movements were very restricted: median and mean movement distances for all sculpin size classes over a 45 day period were 1.3 and 4.4 m respectively. Nevertheless, there was a high degree of intrapopulation and temporal variation in sculpin movement. Movement of juveniles increased with discharge and with the density of large adults. Movement by small and large adults was not influenced by stream flow, but large adults where more mobile when their own density was high. Finally, there were differences in the growth rates of mobile and sedentary sculpins. Mobile juveniles grew faster than sedentary individuals under conditions of low flow and high density of large adults, whereas adults exhibited the opposite pattern. 3. Our results support the hypothesis that juvenile movement and growth is influenced by both intraspecific interactions with adults and stream flow. In contrast, adult movement appears to be influenced by competitive interactions among residents for suitable space. The relationship between movement and growth may provide a negative feedback mechanism regulating mottled sculpin populations in this system.  相似文献   

9.
P. Gaudin 《Hydrobiologia》1985,122(3):267-270
In laboratory conditions, where predation by sculpins (Cottus gobio L.) upon brown trout fry (Salmo trutta L.) was strong, predation was shown to be closely linked to total length of prey and predator. The limit of this predation can be defined by the equation: Y = 0.484 X + 5.8 (Y = total length of the trout fry in mm and X = total length of the sculpin in mm).
  相似文献   

10.
The food spectra, trophic statuses, and feeding interrelations of three most abundant benthic carnivorous fish species inhabiting the Shelikhov Bay—the Pacific cod Gadus macrocephalus, the great sculpin Myoxocephalus polyacanthocephalus, and the Okhotsk sculpin M. ochotensis—are considered based on materials collected during the complex survey of the RV Professor Kaganovsky of the TINRO-Center, in September 2004. It was found that these species were facultative predators with wide food spectra. The significance of prey objects in the diet of the Okhotsk sculpin was as follows: crustaceans, fish, and mollusks. Great sculpin and Pacific cod preyed mostly on fish, then on crustaceans, and mollusks. Pacific cod ate equal proportions of fish and decapods. All the species had age-related variability of diet. The potential competition of great sculpin and Okhotsk sculpin for food was mitigated by the difference in the depths of their ranges, as well as by morphological (body size) and behavioral peculiarities in the areas where their habitats overlapped, and in microecosystems. The most probable competition was among Pacific cod 30–60 cm long and Okhotsk sculpin 20–50 cm in length, as well as among cod and great sculpins of all sizes.  相似文献   

11.
We compared prey-orienting and rheotactic behaviors in a fluvial (Coweeta Creek) and lacustrine (Lake Michigan) population of mottled sculpin. Blinded sculpin from both populations exhibited unconditioned, mechanosensory based rheotaxis to low velocity flows. Whereas Lake Michigan sculpin generally showed increasing levels of positive rheotaxis to increasing velocities, Coweeta Creek sculpin show varying levels of positive rheotaxis at low to intermediate velocities and often reduced positive rheotaxis or even negative rheotaxis at the highest velocities (12 cm s-1). Blinded Lake Michigan, but not Coweeta Creek mottled sculpin exhibited an orienting response to a small (3 mm diameter) artificial prey (50 Hz vibrating sphere). In conclusion, the two populations differed in the strength and polarity of the rheotactic response at higher velocities and in their responsiveness to mechanosensory cues from epibenthic prey sources. These behavioral differences have most likely arisen from different learning experiences in different habitats and from the greater importance of visual cues to the Coweeta Creek mottled sculpin and mechanosensory cues to Lake Michigan mottled sculpin in the sensory guidance of orienting behaviors.  相似文献   

12.
We compared prey-orienting and rheotactic behaviors in a fluvial (Coweeta Creek) and lacustrine (Lake Michigan) population of mottled sculpin. Blinded sculpin from both populations exhibited unconditioned, mechanosensory based rheotaxis to low velocity flows. Whereas Lake Michigan sculpin generally showed increasing levels of positive rheotaxis to increasing velocities, Coweeta Creek sculpin show varying levels of positive rheotaxis at low to intermediate velocities and often reduced positive rheotaxis or even negative rheotaxis at the highest velocities (12?cm?s?1). Blinded Lake Michigan, but not Coweeta Creek mottled sculpin exhibited an orienting response to a small (3?mm diameter) artificial prey (50?Hz vibrating sphere). In conclusion, the two populations differed in the strength and polarity of the rheotactic response at higher velocities and in their responsiveness to mechanosensory cues from epibenthic prey sources. These behavioral differences have most likely arisen from different learning experiences in different habitats and from the greater importance of visual cues to the Coweeta Creek mottled sculpin and mechanosensory cues to Lake Michigan mottled sculpin in the sensory guidance of orienting behaviors.  相似文献   

13.
Predation can promote divergence between prey populations and contribute to ecological speciation. In theory, predators can also constrain prey population divergence. In coastal British Columbia, Canada, Gasterosteus aculeatus (three‐spined stickleback) species pairs only occur in lakes with a single species of predatory fish: Oncorhynchus clarkii (the cutthroat trout). Similar lakes containing additional predatory fish species (Cottus asper, prickly sculpins; Oncorhynchus mykiss, rainbow trout) contain only single species of morphologically intermediate stickleback, suggesting that these predators prevent the coexistence of stickleback species pairs. We conducted a mesocosm experiment to investigate how prickly sculpins might constrain divergence, by quantifying their impact on survival and natural selection on antipredator (armour) traits in F2 stickleback from a cross between ecologically divergent populations. We tested three hypotheses: (1) sculpin predation on sticklebacks reduces survival in a way that could result in their exclusion from certain niches; (2) sculpins compete with stickleback; (3) sculpins respond to prey vulnerabilities in similar ways to cutthroat trout, tending to constrain rather than to enhance divergence. We found that sculpins significantly reduce stickleback survival, that their presence per se does not reduce growth in stickleback, and that predation did not result in selection on any of the armour traits measured, or on gill raker length, which is an important trophic trait. These results tend to refute hypotheses (2) and (3), while supporting hypothesis (1). © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 877–885.  相似文献   

14.
Summary In a series of laboratory experiments we examined the hypothesis that larvae of stream mayflies would respond to the presence of two different types of predators in such a way as to minimize their risk of being consumed by each. Positioning of larvae (whether they frequent the top, sides, or bottom of stones) of Baetis tricaudatus and Ephemerella subvaria was altered by the presence of predaceous stoneflies (Agnetina capitata) with a larger proportion of the population occurring on the upper surfaces, where the probability of encountering the predator was lowest. The presence of a benthivorous fish (Cottus bairdi) had no significant effects on positioning of the mayfly larvae. Lack of fish effects may reflect an inability of the mayflies to detect or respond to sculpins, or alternately may indicate that sculpins do not normally present a important predation risk for these mayflies. Failure of mayfly prey to account for fish predators when responding to the presence of stoneflies appcars to explain facilitation previously observed between stoneflies and sculpins.  相似文献   

15.
Brown trout (Salmo trutta L.) and sculpin (Cottus gobio L.) predation on the cased limnephilid larvae Glyphotaelius pellucidus (Retz.) (weak, broad leaf case), Limnephilus pantodapus McLachl. (weak, long cylindrical leaf case), L. rhombicus (L.) (rigid, hedgehog case) and Potamophylax cingulatus (Steph.) (rigid, cylindrical mineral case) was studied in the laboratory. The proportion of larvae ingested was significantly higher in brown trout than in sculpin for all four prey species. Brown trout captured larvae of all four species with equal success, but the higher number of unsuccessful captures resulted in a higher survival rate for P. cingulatus. It was significantly more difficult for sculpin than for brown trout to capture L. pantodapus larvae and to ingest all species except L. rhombicus. P. cingulatus larvae were never ingested by sculpins, and had the highest survival rate after capture by both fish species. In brown trout, the handling time of L. pantodapus was significantly longer than that of P. cingulatus. Sculpin had a significantly longer handling time of G. pellucidus than brown trout. L. pantodapus and L. rhombicus larvae feigned dead significantly longer than did those of G. pellucidus and P. cingulatus upon attacks from sculpins. L. rhombicus larvae also feigned dead for a long time upon attacks from brown trout. The survival rate of a larva attacked by sculpin or brown trout depends on both case rigidity as well as its behaviour. Brown trout was a more successful predator of cased caddis larvae than sculpin.  相似文献   

16.
The identification of potential competitors has been driven by the concept of limiting similarity. Lacking are explicit tests of interaction strength among morphologically similar and dissimilar species. I used the mottled sculpin, Cottus bairdi, as a focal species in an artificial stream experiment designed to compare the effect of intraspecific competition to interspecific cometition from two very different species: a congener, the Kanawha sculpin (C. carolinae ssp.), and an unrelated species, the fantail darter (Etheostoma flabellare). The differences in morphology between these two species generate specific predictions under limiting similarity regarding the likelihood of competition and its relative strength: the congener should be a more important potential competitor. Increased fish density had a strong effect on the multivariate response of survival and growth, and on the relative condition of C. bairdi, indicating competition. The effect of additional C. bairdi or Kanawha sculpins were roughly equal, but the effect of E. flabellare was significantly greater. The most important potential impact on C. bairdi came from interspecific competition by a species that is smaller and very different in morphology, contrary to predictions based on limiting similarity.  相似文献   

17.
1. In some situations fish have strong top‐down effects in stream communities while in others they seem to be relatively unimportant. Differences in the impact of fish may depend on a variety of factors including the foraging mode of the fish, interactions among fish species and temporal variation in environmental conditions and species interactions. 2. We investigated the effect of brook trout (Salvelinus fontinalis) and mottled sculpin (Cottus bairdi) on lower trophic levels in Appalachian streams and whether or not interactions between these fish changed their influence. Mesocosms were placed in a headwater stream in a randomized complete block design. Within blocks, mesocosms were randomly assigned to one of the following treatments: (i) no fish; (ii) sculpin only; (iii) trout only and (iv) both sculpin and trout. Fish biomass was the same in all three fish treatments. Invertebrate density and algal biomass in mesocosms were determined after 3 weeks. We repeated the experiment in the autumn, spring and summer to test for seasonality of fish effects. 3. The effect of fish on invertebrate assemblages was seasonal and depended on prey identity. Sculpin strongly suppressed grazer abundance in spring while trout had little effect on grazers in any season. The influence of both fish on insect predators was similar and relatively constant across seasons. We found little evidence of an interaction between sculpin and trout that strongly influenced their effect on prey across seasons. 4. None of the fish treatments influenced algal biomass during any of the seasons. Algal growth was also seasonal, with a two‐ to four‐fold increase in algal biomass in spring compared to autumn and summer. 5. Our results indicate that benthic and drift feeding fish differ in their effects on some, but not all prey. Furthermore, fish effects on prey were strongly seasonal for some, but not all prey types. While the temporal context is not commonly considered, our results indicate seasonality can be an important component of predator–prey interactions in streams.  相似文献   

18.
During three different seasons Mesidotea entomon specimens from fourhorn sculpin stomachs were analyzed, and compared with the M. entomon population in the field. The field samplings were carried out in the northern Bothnian Sea. Feeding experiments revealed fourhorn sculpins to be highly selective when feeding on M. entomon.The fourhorn sculpin most preferably selected large M. entomon in the field as well as in the laboratory experiments. The preference for large M. entomon remained after correction for availability of differently sized M. entomon. In summer the actual sizes of M. entomon eaten by fourhorn sculpin were smaller than in autumn and winter. During all three seasons the oldest M. entomon were the ones most preferred. Ultimate effects of predation by fourhorn sculpin on the life-history of M. entomon are discussed.  相似文献   

19.
I studied the movements of adult Japanese fluvial sculpin, Cottus pollux, in a Japanese mountain stream. An exceptionally severe flood in late September had negative impacts on refuge abundance, condition and population density of the sculpin. The mean distance moved monthly correlated positively with water discharge, but not with water temperature or with population density. Overall, the mean distance sculpins moved after the flood was significantly greater than before the flood, and sculpins tended to move into riffle-raceways after the flood. Comparisons of refuge-site limitation for adults and water depths between habitats indicated that the flood affected riffle-raceways less than pools. Fish in poorer conditions were likely to move extensively, and the condition of fish captured initially in pools deteriorated more significantly than that of sculpins captured in riffle-raceways. Movement bias into riffle-raceways by the sculpins after the flood suggests they sought suitable habitat with available refuges. The results suggest vulnerability to flood disturbance of the sculpins inhabiting the interstitial spaces of the substrate.  相似文献   

20.
《Zoology (Jena, Germany)》2014,117(2):112-121
The adaptive radiations of African cichlids resulted in a diversity of feeding morphologies and strategies, but the role of sensory biology in prey detection and feeding ecology remains largely unexplored. Two endemic Lake Malawi cichlid genera, Tramitichromis and Aulonocara, feed on benthic invertebrates, but differ in lateral line morphology (narrow and widened lateral line canals, respectively) and foraging strategy. The hypothesis that they use their lateral line systems differently was tested by looking at the relative contribution of the lateral line system and vision in prey detection by Tramitichromis sp. and comparing results to those from a complementary study using Aulonocara stuartgranti (Schwalbe et al., 2012). First, behavioral trials were used to assess the ability of Tramitichromis sp. to detect live (mobile) and dead (immobile) benthic prey under light and dark conditions. Second, trials were run before, immediately after, and several weeks after chemical ablation of the lateral line system to determine its role in feeding behavior. Results show that Tramitichromis sp. is a visual predator that neither locates prey in the dark nor depends on lateral line input for prey detection and is thus distinct from A. stuartgranti, which uses its lateral line or a combination of vision and lateral line to detect prey depending on light condition. Investigating how functionally distinctive differences in sensory morphology are correlated with feeding behavior in the laboratory and determining the role of sensory systems in feeding ecology will provide insights into how sensory capabilities may contribute to trophic niche segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号