首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamic cerebral autoregulation is preserved in neurally mediated syncope.   总被引:5,自引:0,他引:5  
To test whether cerebral autoregulation is impaired in patients with neurally mediated syncope (NMS), we evaluated 15 normal subjects and 37 patients with recurrent NMS. Blood pressure (BP), heart rate, and cerebral blood velocity (CBV) (transcranial Doppler) were recorded at rest and during 80 degrees head-up tilt (HUT). Static cerebral autoregulation as assessed from the change in cerebrovascular resistance during HUT was the same in NMS and controls. Properties of dynamic cerebral autoregulation were inferred from transfer gain, coherence, and phase of the relationship between BP and CBV estimated from filtered data segments (0.02-0.8 Hz). During the 3 min preceding syncope, dynamic cerebral autoregulation of subjects with NMS did not differ from that of controls nor did it change over the course of HUT in patients with NMS or in control subjects. Dynamic cerebral autoregulation was also unaffected by the degree of orthostatic intolerance as inferred from latency to onset of syncope. We conclude that cerebral autoregulation in patients with recurrent syncope does not differ from that of normal control subjects.  相似文献   

2.
Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco(2) were continuously recorded in 14 right-handed healthy subjects (21-43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 +/- 0.16 vs. 0.26 +/- 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 +/- 0.23 vs. 0.29 +/- 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 +/- 0.37 vs. 0.46 +/- 0.32 cm.s(-1).mmHg(-1), P < 0.05) and left (0.61 +/- 0.29 vs. 0.45 +/- 0.24 cm.s(-1).mmHg(-1), P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 +/- 0.31 vs. 0.39 +/- 0.15 cm.s(-1).mmHg(-1), P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (-0.04 +/- 1.01 vs. 0.80 +/- 0.86 rad, P < 0.01) and left (0.11 +/- 0.81 vs. 0.57 +/- 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 +/- 0.87 vs. 0.64 +/- 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.  相似文献   

3.
We sought to determine whether cerebral autoregulation (CA) is compromised during orthostatic stress superimposed with systemic hypotension. Transient systemic hypotension was produced by deflation of thigh cuffs previously inflated to suprasystolic pressure, combined with or without lower body negative pressure (LBNP). Cardiac output (CO) decreased from a baseline of 5.0+/-0.5 l/min by -8.3+/-1.7, -19.2+/-2.0, and -30.6+/-3.4% during LBNP of -15, -30, and -50 Torr, respectively. Mean arterial pressure (MAP) was maintained during LBNP, despite decreases in systolic and pulse pressures. Middle cerebral arterial blood flow velocity (VMCA) decreased significantly from a baseline of 64+/-3 to 58+/-4 cm/s (-9.7+/-2.4%) at -50 Torr of LBNP. The reduction in VMCA was associated with a decrease in regional cerebral O2 saturation. However, the percent decrease in VMCA was markedly less than that of CO. This suggests that the magnitude of the change in VMCA (an index of cerebral blood flow) is less than would be predicted, given the decrease in CO. Transient systemic hypotension decreased MAP by -21+/-2, -24+/-2, -28+/-3, and -26+/-3% at rest and during LBNP of -15, -30, and -50 Torr, respectively. Likewise, this acute hypotension resulted in decreases in VMCA of -20+/-2, -21+/-2, -24+/-25, and -19+/-2% and regional cerebral O2 saturation of -5+/-1, -6+/-1, -6+/-1, and -7+/-2% at rest and during LBNP of -15, -30, and -50 Torr, respectively. Complete recovery of VMCA to baseline values following transient hypotension (ranging from 5 to 8 s) occurred significantly earlier compared with MAP (from 10 to 12 s). No subjects experienced syncope during acute hypotension. We conclude that CA is preserved during LBNP, superimposed with transient systemic hypotension, despite the decrease in VMCA associated with sustained central hypovolemia in normal healthy individuals. This preserved CA is vital for the prevention of orthostatic syncope.  相似文献   

4.
The effect of hypercapnic ventilatory response was examined in anaesthetized spontaneously breathing rats by using rebreathing techniques both at supine and -30 degrees head-down tilt positions. No significant differences were found in the minute ventilation response between the supine and head-down positions during hypercapnic stimulations. In contrast, we found that hypercapnia-stimulated breathing affected the relationship between deltaPoes and deltaP(ET), CO2. This study demonstrates that higher peak deltaPoes was developed in order to maintain the same ventilation in the supine and head-tilt position. The higher deltaPoes/deltaP(ET), CO2 head-down ratio than the supine was a result of increased airflow impedance of the total respiratory system while head-down. It is concluded that ventilation at head-down is regulated in such a way as to maintain the pH and Paco, despite mechanical loading imposed by the environment. Hence, during hypercapnic stimulation the ventilatory response in head-down position is shaped by interaction of chemical drives and mechanical afferent information arising.  相似文献   

5.
We investigated whether dynamic cerebral autoregulation is affected by exhaustive exercise using transfer-function gain and phase shift between oscillations in mean arterial pressure (MAP) and middle cerebral artery (MCA) mean blood flow velocity (V(mean)). Seven subjects were instrumented with a brachial artery catheter for measurement of MAP and determination of arterial Pco(2) (Pa(CO(2))) while jugular venous oxygen saturation (Sv(O(2))) was determined to assess changes in whole brain blood flow. After a 10-min resting period, the subjects performed dynamic leg-cycle ergometry at 168 +/- 5 W (mean +/- SE) that was continued to exhaustion with a group average time of 26.8 +/- 5.8 min. Despite no significant change in MAP during exercise, MCA V(mean) decreased from 70.2 +/- 3.6 to 57.4 +/- 5.4 cm/s, Sv(O(2)) decreased from 68 +/- 1 to 58 +/- 2% at exhaustion, and both correlated to Pa(CO(2)) (5.5 +/- 0.2 to 3.9 +/- 0.2 kPa; r = 0.47; P = 0.04 and r = 0.74; P < 0.001, respectively). An effect on brain metabolism was indicated by a decrease in the cerebral metabolic ratio of O(2) to [glucose + one-half lactate] from 5.6 to 3.8 (P < 0.05). At the same time, the normalized low-frequency gain between MAP and MCA V(mean) was increased (P < 0.05), whereas the phase shift tended to decrease. These findings suggest that dynamic cerebral autoregulation was impaired by exhaustive exercise despite a hyperventilation-induced reduction in Pa(CO(2)).  相似文献   

6.
To test whether cerebral autoregulation is impaired in patients with postural tachycardia syndrome (POTS), we evaluated 17 healthy control subjects and 27 patients with POTS. Blood pressure, heart rate, and cerebral blood velocity (transcranial Doppler) were recorded at rest and during 80 degree head-up tilt (HUT). Static cerebral autoregulation, as assessed from the change in cerebrovascular resistance during HUT, was the same in POTS and in controls. The properties of dynamic cerebral autoregulation were inferred from transfer gain, coherence, and phase of the relationship between blood pressure and cerebral blood velocity estimated from filtered data segments (0.02-0.8 Hz). Dynamic cerebral autoregulation of patients with POTS did not differ from that of controls. The patients' dynamic cerebral autoregulation did not change over the course of HUT, despite increased tachycardia suggestive of worsening orthostatic stress. Inflation of military anti-shock trouser pants substantially reduced the tachycardia of patients with POTS without affecting cerebral autoregulation. Symptoms of orthostatic intolerance were reduced in one-half of the patients following military anti-shock trouser pants inflation. We conclude that cerebral perfusion and autoregulation in many patients with POTS do not differ from that of normal control subjects.  相似文献   

7.
We tested the hypothesis that constriction of cerebral arterioles during acute increases in blood pressure is attenuated by activation of potassium (K(+)) channels. We tested the effects of inhibitors of calcium-dependent K(+) channels [iberiotoxin (50 nM) and tetraethylammonium (TEA, 1 mM)] on changes in arteriolar diameter during acute hypertension. Diameter of cerebral arterioles (baseline diameter = 46 +/- 2 microm, mean +/- SE) was measured using a cranial window in anesthetized rats. Arterial pressure was increased from a control value of 96 +/- 1 mmHg to 130, 150, 170, and 200 mmHg by intravenous infusion of phenylephrine. Increases in arterial pressure from baseline to 130 and 150 mmHg decreased the diameter of cerebral arterioles by 5-10%. Greater increases in arterial pressure produced large increases in arteriolar diameter (i.e., "breakthrough of autoregulation"). Iberiotoxin or TEA inhibited increases in arteriolar diameter when arterial pressure was increased to 170 and 200 mmHg. The change in arteriolar diameter at 200 mmHg was 20 +/- 3% and -1 +/- 4% in the absence and presence of iberiotoxin, respectively. These findings suggest that calcium-dependent K(+) channels attenuate cerebral microvascular constriction during acute increases in arterial pressure, and that increases in arteriolar diameter at high levels of arterial pressure are not simply a passive phenomenon.  相似文献   

8.
Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degrees head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degrees HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degrees HDT experience increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in intracranial volume that accompany changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.  相似文献   

9.
The kidneys represent a fundamental organ system responsible in part for the control of vascular volume. A 10% to 20% reduction in plasma volume is one of the fundamental adaptations during exposure to low gravity environments such as bedrest and space flight. Bedrest-induced hypovolemia has been associated with acute diuresis and natriuresis. Elevated baseline plasma renin activity and aldosterone levels have been observed in human subjects following exposure to head-down tilt and spaceflight without alterations in renal sodium excretion. Further, attempts to restore plasma volume with isotonic fluid drinking or infusion in human subjects exposed to head-down bedrest have failed. One explanation for these observations is that renal distal tubular cells may become less sensitive to aldosterone following exposure to head-down tilt, with a subsequent reduction in renal capacity for sodium retention. We hypothesized that elevated sodium and water excretion observed during prolonged exposure to bedrest and the subsequent inability to restore body fluids by drinking might be reflected, at least in part, by reduced renal tubular responsiveness to aldosterone. If renal tubular responsiveness to aldosterone were reduced with confinement to bedrest, then we would expect measures of renal sodium retention to be reduced when a bolus of aldosterone was administered in head-down tilt (HDT) bedrest compared to a control experimental condition. In order to test this hypothesis, we conducted an investigation in which we administered an acute bolus of aldosterone (stimulus) and measured responses in renal functions that included renal clearances of sodium and free water, sodium/potassium ratio in urine, urine sodium concentration, and total and fractional renal sodium excretion.  相似文献   

10.
Changes in cerebral hemodynamics, during and after head down tilt (HDT), were examined by means of transcranial Doppler technique (TCD) and near infrared spectroscopy (NIRS) in humans, and laser Doppler flowmetry (LDF) in rabbits. Mean cerebral blood flow (CBF) velocity measured by TCD increased during the first 6 h of HDT compared with the pre-HDT value. NIRS experiments demonstrated that brain oxygenation and hemoglobin concentration increased with postural change from upright to supine. These results suggest that exposure to HDT increases CBF during the early phase of HDT in humans. In rabbits anesthetized with alpha chloralose, on the other hand, 45 degrees HDT did not change CBF significantly in the parietal cortex during 1 h after the onset of HDT. The discrepancy may be explained by the difference in species, tilt angle, or the brain region where CBF has been measured.  相似文献   

11.
The hypothesis was tested that acute water immersion to the neck (WI) compared with 6 degrees head-down tilt (HDT) induces a more pronounced distension of the heart and lower plasma levels of vasoconstrictor hormones. Ten healthy males underwent 30 min of HDT, WI, and a seated control (randomized). During WI, left atrial diameter and stroke volume increased to the same extent as during HDT. Cardiac output increased by 1 l/min more during WI than during HDT. (P < 0.05). Plasma atrial natriuretic peptide increased during WI (P < 0.05) but not during HDT, whereas plasma norepinephrine, vasopressin, and renin activity were suppressed similarly. Mean arterial pressure decreased by 9 mmHg (P < 0.05) during HDT and was unchanged during WI, and heart rate decreased more during HDT (P < 0.05). Arterial pulse pressure increased considerably more during HDT than during WI. In conclusion, the hypothesis was not confirmed because the cardiac atria were similarly distended by acute HDT and WI and the release of vasoconstrictor hormones were suppressed to the same extent.  相似文献   

12.
Tolerance to positive vertical acceleration (Gz) gravitational stress is reduced when positive Gz stress is preceded by exposure to hypogravity, which is called the "push-pull effect." The purpose of this study was to test the hypothesis that baroreceptor reflexes contribute to the push-pull effect by augmenting the magnitude of simulated hypogravity and thereby augmenting the stimulus to the baroreceptors. We used eye-level blood pressure as a measure of the effectiveness of the blood pressure regulatory systems. The approach was to augment the magnitude of the carotid hypertension (and the hindbody hypotension) when hypogravity was simulated by head-down tilt by mechanically occluding the terminal aorta and the inferior vena cava. Sixteen anesthetized Sprague-Dawley rats were instrumented with a carotid artery catheter and a pneumatic vascular occluder cuff surrounding the terminal aorta and inferior vena cava. Animals were restrained and subjected to a control gravitational (G) profile that consisted of rotation from 0 Gz to 90 degrees head-up tilt (+1 Gz) for 10 s and a push-pull G profile consisting of rotation from 0 Gz to 90 degrees head-down tilt (-1 Gz) for 2 s immediately preceding 10 s of +1 Gz stress. An augmented push-pull G profile consisted of terminal aortic vascular occlusion during 2 s of head-down tilt followed by 10 s of +1 Gz stress. After the onset of head-up tilt, the magnitude of the fall in eye-level blood pressure from baseline was -20 +/- 1.3, -23 +/- 0.7, and -28 +/- 1.6 mmHg for the control, push-pull, and augmented push-pull conditions, respectively, with all three pairwise comparisons achieving statistically significant differences (P < 0.01). Thus augmentation of negative Gz stress with vascular occlusion increased the magnitude of the push-pull effect in anesthetized rats subjected to tilting.  相似文献   

13.
The effects of physical activity on cerebral blood flow (CBF) and cerebral autoregulation (CA) have not yet been fully evaluated. There is controversy as to whether increasing heart rate (HR), blood pressure (BP), and sympathetic and metabolic activity with altered levels of CO2 might compromise CBF and CA. To evaluate these effects, we studied middle cerebral artery blood flow velocity (CBFV) and CA in 40 healthy young adults at rest and during increasing levels of physical exercise. We continuously monitored HR, BP, end-expiratory CO2, and CBFV with transcranial Doppler sonography at rest and during stepwise ergometric challenge at 50, 100, and 150 W. The modulation of BP and CBFV in the low-frequency (LF) range (0.04-0.14 Hz) was calculated with an autoregression algorithm. CA was evaluated by calculating the phase shift angle and gain between BP and CBFV oscillations in the LF range. The LF BP-CBFV gain was then normalized by conductance. Cerebrovascular resistance (CVR) was calculated as mean BP adjusted to brain level divided by mean CBFV. HR, BP, CO2, and CBFV increased significantly with exercise. Phase shift angle, absolute and normalized LF BP-CBFV gain, and CVR, however, remained stable. Stable phase shift, LF BP-CBFV gain, and CVR demonstrate that progressive physical exercise does not alter CA despite increasing HR, BP, and CO2. CA seems to compensate for the hemodynamic effects and increasing CO2 levels during exercise.  相似文献   

14.
Thomason, Donald B., Otis Anderson III, and Vandana Menon.Fractal analysis of cytoskeleton rearrangement in cardiac muscleduring head-down tilt. J. Appl.Physiol. 81(4): 1522-1527, 1996.Head-down tiltby tail suspension of the rat produces a volume, but not pressure, loadon the heart. One response of the heart is cytoskeleton rearrangement,a phenomenon commonly referred to as disruption. In these experiments,we used fractal analysis as a means to measure complexity of themicrotubule structures at 8 and 18 h after imposition of head-downtilt. Microtubules in whole tissue cardiac myocytes were stained withfluorescein colchicine and were visualized by confocal microscopy. Thefractal dimensions (D) of thestructures were calculated by the dilation method, which involvessuccessively dilating the outline perimeter of the microtubulestructures and measuring the area enclosed. The head-down tilt resultedin a progressive decrease in D(decreased complexity) when measured at small dilations of theperimeter, but the maximum D (maximumcomplexity) of the microtubule structures did not change withtreatment. Analysis of the fold change in complexity as a function ofthe dilation indicates an almost twofold decrease in microtubulecomplexity at small kernel dilations. This decrease in complexity isassociated with a more Gaussian distribution of microtubule diameters,indicating a less structured microtubule cytoskeleton. We interpretthese data as a microtubule rearrangement, rather than erosion, becausetotal tubulin fluorescence was not different between groups. Thisconclusion is supported by F-actin fluorescence data indicating adispersed structure without loss of actin.

  相似文献   

15.
Dynamic cerebral autoregulation (CA) has been studied previously using spectral analysis of oscillations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). The dynamics of the CA can be modeled as a high-pass filter. The purpose of this study is to compare CA of blood pressure oscillations induced by gravitational loading to CA during resting conditions. We subjected twelve healthy subjects to repeated sinusoidal head-up (0 degrees - 60 degrees) tilts at several set frequencies (0.07 to 0.25 Hz) on a computer controlled tilt table while we recorded ABP (Finapres) and CBFV (transcranial Doppler ultrasound). We fitted the data sets to a high-pass filter model and computed an average time constant (T). Our results show similar phase leads of CBFV to ABPbrain in the rest recording and in sinusoidal tilting, in the studied frequency range. The transfer function gain of the resting spectra increased with increasing frequency, the gain of the tilting spectra did not. Fitting the phase responses of both data sets to a high pass filter model yielded similar time constants.  相似文献   

16.
Acute head-downtilt (AHDT, 30°) in humans induces a transient ventilatoryaugmentation for 1-2 min accompanied by a high venous return.However, the mechanisms underlying this respiratory response remainobscure because of limitations of experiments carried out in humansubjects. The present study was undertaken to determine whetherAHDT-induced respiratory augmentation exists in the anesthetized,paralyzed, and ventilated cat and, if so, whether this response dependson 1) the cerebellum,2) the carotid sinus (CS)and/or vagal afferents, and3) elevation of central venousreturn. The integrated phrenic neurogram, arterial blood pressure,central venous pressure (CVP), and end-tidalPCO2 were recorded before, during,and after AHDT. The results showed that AHDT produced a transient (~2min) enhancement of minute phrenic activity (~30%) primarily via anincrease in peak integrated phrenic neurogram amplitude associated witha remarkable elevation of CVP (~3 min). Cerebellectomy, CSdenervation, bilateral vagotomy, or clamping CVP did not affect thepresence of the AHDT-induced minute phrenic activity response. Thesefindings demonstrate that the anesthetized cat is a suitable model forinvestigating the mechanisms involved in AHDT-induced respiratoryaugmentation. Preliminary studies suggest that this response does notrequire the cerebellum, CS/vagal afferents, or an associated rise incentral venous return.

  相似文献   

17.
We used venous congestion strain gauge plethysmography (VCP) to measure the changes in fluid filtration capacity (K(f)), isovolumetric venous pressure (Pv(i)), and blood flow in six volunteers before, on the 118th day (D118) of head-down tilt (HDT), and 2 days after remobilization (Post). We hypothesized that 120 days of HDT cause significant micro- and macrovascular changes. We observed a significant increase in K(f) from 3.6 +/- 0.4 x 10(-3) to 5.7 +/- 0.9 x 10(-3) ml. min(-1). 100 ml(-1). mmHg(-1) (+51.4%; P < 0.003), which returned to pretilt values (4.0 + 0.4 x 10(-3) ml. min(-1). 100 ml(-1). mmHg(-1)) after remobilization. Similarly, Pv(i) increased from 13.4 +/- 2.1 mmHg to 28.9 +/- 2.8 mmHg (+105.8%; P < 0.001) at D118 and was not significantly different at Post (12.4 +/- 2.6 mmHg). Blood flow decreased significantly from 2.3 +/- 0.3 to 1.3 +/- 0.2 ml. min(-1). 100 ml tissue(-1) at D118 and was found elevated to 3.4 +/- 0.7 ml. min(-1). 100 ml tissue(-1) at Post. We believe that the increased K(f) is caused by a higher microvascular water permeability. Because this may result in edema formation, it could contribute to the alterations in fluid homeostasis after exposure to microgravity.  相似文献   

18.
In 3 identical experiments with head-down bed rest lasting 60, 90, and 120 days and involving 18 volunteers, dynamics of the development of cardiovascular system (C.V.S) deconditioning was studied. A set of radioisotopic research techniques was used. Volumes of hemocirculation, body fluids, and metabolic activity of the bone marrow were investigated. Functions of the central and peripheral hemodynamics were studied. To determine the extent of C.V.S. deconditioning during the baseline period, on days 60, 90, and 120 of hypokinesia and during recovery, an orthostatic test was performed. The degree of gravitational blood shifting in regions (the head, thorax, the abdomen, the lower extremities) was recorded. Critical thresholds of blood shifting in the body were determined. It was established that the blood pooled in the splanchnic region participates in the decrease of central hypovolemia. Because of the insufficient number of observations, this research should be continued. During recovery, the sign of (CVS) deconditioning noted demonstrated a clear tendency to normalization.  相似文献   

19.
Effects of head-down tilt on intracranial pressure were studied in anesthetized and conscious rabbits. Adult Japanese white rabbits of both sexes, weighing 2.5-3.5 kg, were used in the experiments. Experiment 1. Animals were anesthetized with pentobarbital, and ICP was monitored through a catheter inserted into the subarachnoid space. ICP elevated immediately after the onset of 45 degrees HDT and gradually reduced toward the baseline level in the next 8 hours. Experiment 2. Each rabbit was exposed to 45 degrees HDT for 24 hours and the ICP was measured through a catheter which had been implanted 7 days before. In the conscious rabbits, ICP increased about 4 mmHg after the onset of 45 degrees HDT, further increased gradually to the peak at 11 hours of HDT, and then started to return to the baseline. These results suggest that the time course of the change in ICP during HDT is considerably different between anesthetized and conscious rabbits.  相似文献   

20.
The role of lung receptors in respiratory control during acute head-down tilt (AHDT, -30 degrees) was investigated in anesthetized, tracheostomized rats. The results show that AHDT increased the mechanical respiratory load, slowed inspiratory flow, reduced the end expiratory lung volume, tidal volume and minute ventilation. On the other hand, during AHDT a significant rise in inspiratory swings of oesophageal pressure was recorded indicated a compensatory increase in inspiratory muscle contraction force. These effects were reduced after transaction of the vagus nerve. It was also shown that respiratory response on added mechanical load was reduced during AHDT as compared with the value in horizontal position. This deference disappeared after vagotomy. The data obtained suggested that afferent information from lung receptors take part in compensation of respiratory effects of AHDT. The cause of reduction in respiratory response to loading during AHDT involves weakness of lung reflexes evoked by volume changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号