首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new tool to study axon biology.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Comparisons of recent estimations of home range sizes for the critically endangered black rhinoceros in Hluhluwe-iMfolozi Park (HiP), South Africa, with historical estimates led reports of a substantial (54%) increase, attributed to over-stocking and habitat deterioration that has far-reaching implications for rhino conservation. Other reports, however, suggest the increase is more likely an artefact caused by applying various home range estimators to non-standardised datasets. We collected 1939 locations of 25 black rhino over six years (2004–2009) to estimate annual home ranges and evaluate the hypothesis that they have increased in size. A minimum of 30 and 25 locations were required for accurate 95% MCP estimation of home range of adult rhinos, during the dry and wet seasons respectively. Forty and 55 locations were required for adult female and male annual MCP home ranges, respectively, and 30 locations were necessary for estimating 90% bivariate kernel home ranges accurately. Average annual 95% bivariate kernel home ranges were 20.4 ± 1.2 km2, 53 ±1.9% larger than 95% MCP ranges (9.8 km2 ± 0.9). When home range techniques used during the late-1960s in HiP were applied to our dataset, estimates were similar, indicating that ranges have not changed substantially in 50 years. Inaccurate, non-standardised, home range estimates and their comparison have the potential to mislead black rhino population management. We recommend that more care be taken to collect adequate numbers of rhino locations within standardized time periods (i.e., season or year) and that the comparison of home ranges estimated using dissimilar procedures be avoided. Home range studies of black rhino have been data deficient and procedurally inconsistent. Standardisation of methods is required.  相似文献   

12.
13.
14.
Several diagnostic methods for the evaluation and monitoring were used to find out the pro-inflammatory status, as well as incidence of sepsis in critically ill patients. One such recent method is based on investigating the genetic polymorphisms and determining the molecular and genetic links between them, as well as other sepsis-associated pathophysiologies. Identification of genetic polymorphisms in critical patients with sepsis can become a revolutionary method for evaluating and monitoring these patients. Similarly, the complications, as well as the high costs associated with the management of patients with sepsis, can be significantly reduced by early initiation of intensive care.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号