首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the model of isolated, ventilated rabbit lungs, perfused with isoionic and isooncotic fluid, the addition of arachidonic acid to the perfusion fluid or the liberation of arachidonic acid by the Ca-ionophore A 23187 result in an increase in pulmonary vascular resistance and permeability. The former can be ascribed to cyclooxygenase products, the latter to lipoxygenase products of arachidonic acid. The effect of alpha-tocopherol, its chromane compound, alpha-tocopherolquinone, phytol, 2-methyl-1,4-naphthoquinone, 2-methyl-3-phytyl-1,4-naphthoquinone and of superoxide dismutase (SOD) on the increase in pulmonary vascular resistance and permeability was investigated. A membrane effect of the phytyl side chain and an antioxidative effect of the chromane compound can be distinguished: phytol increase the arachidonate-induced rise of pulmonary vascular resistance and permeability, whereas the chromane compound decreases both to a large degree. Methyl-phytyl-naphthoquinone and methyl-naphthoquinone gave equivalent results. SOD decreases the enhanced vascular resistance and the vascular leakage. The possibility of antioxidative therapy in acute pulmonary lesions with vascular leakage and increased vascular resistance is discussed.  相似文献   

2.
Liberation and metabolism of arachidonic acid may be the common final pathway of different stimuli on the pulmonary vascular bed. In a model of isolated, ventilated rabbit lungs, perfused with Krebs Henseleit albumin buffer in a recirculating system, changes of pulmonary vascular resistance and of vascular permeability are monitored continuously. The addition of free arachidonic acid or of the Ca-ionophore A 23187 to the perfusion fluid consistently evokes a biphasic increase in vascular resistance as well as an initially reversible increase in vascular permeability, followed by pulmonary edema. Both phases of increased vascular resistance are completely suppressed by inhibition of the cyclooxygenase, decreased to a large degree by inhibitors of thromboxane synthetase, and markedly augmented by short preincubation of arachidonic acid with ram seminal vesicular microsomes and by sulfhydryl reagents. The increased pulmonary vascular permeability is augmented by inhibition of cyclooxygenase and reduced by simultaneous lipoxygenase inhibition. Antagonists of histamine, serotonin and sympathic or parasympathic activity do not have any influence. PG F2alpha., TxB2, PG E2 and PG I2 alter the pulmonary vascular resistance, but do not increase vascular permeability. In conclusion, increased availability of free arachidonic acid evokes a rise in pulmonary vascular resistance, which can be ascribed to cyclooxygenase products, especially to thromboxane, and causes a rise in vascular permeability which can be ascribed to lipoxygenase products. The findings may be related to acute pulmonary lesions with increase in vascular resistance and with vascular leakage.  相似文献   

3.
Liberation and metabolism of arachidonic acid may be the common final pathway of different stimuli on the pulmunary vascular bed. In a model of isolated, ventilated rabbit lungs, perfused with krebs Henseleit albumin buffer in a recirculating system, changes of pulmonary vascular resistance and of vascular permeability are monitored continously. The addition of free arachidonic acid or of the Ca-ionophore A 23187 to the perfusion fluid consistently evokes a biphasic increases in vascular resistance as well as an initially reversible increase in vascular permeability, followed by pulmonary edema. Both phases of increased vascular resistance are completely suppressed by inhibition of the cyclooxygenase, decreased to a large degree by inhibitors of thromnoxane synthetase, and markedly augmented by short preincubation of arachidonic acid with ram seminal vescular microsomes and by sulfhydryl reagents. The increased pulmonary vascular permeability is augmented by inhibition of cyclooxygenase and reduced by simulteneous lipoxygenase inhibition. Antagonists of histamine, serotonin and sympathic or parasympathic activity do not have any influence.PG F, TxB E2 and PG I2 alter the pulmonary vascular resistance, but do not increase vascular permeability.In inclusion, increased availability of free arachidonic acid evokes a rise in pulmonary vascular resistance, which can be ascribed to cyclooxygenase products, especially to thromboxane, and causes a rise in vascular permeability which can be ascribed to lipoxygenase products.The findings may be related to acute pulmonary lesions with increase in vascular resistance and with vascular leakage.  相似文献   

4.
In a previous study, we demonstrated that phorbol myristate acetate-(PMA) induced injury in isolated blood-perfused rabbit lungs was characterized by increased pulmonary vascular resistance (PVR) and permeability to water as measured by fluid filtration coefficient (Kf). The Kf increase was prevented by pretreatment with three cyclooxygenase inhibitors, indomethacin, ibuprofen, and meclofenamate. Other studies have shown that PMA causes a decrease in pulmonary vascular surface area, probably due to the increase in arterial resistance. Measurement of Kf requires increased microvascular pressure, and therefore Kf estimates the permeability of the entire vascular bed. Thus the permeability of the flowing vessels may be overestimated by Kf. In this study, we chose to investigate the effect of PMA on vascular permeability to protein by measuring albumin leak. Because this measurement does not require a hydraulic stress, it is more likely to reflect the permeability of flowing vessels. PMA administration (5 x 10(-8) M) caused significant increases in both PVR and 125I-labeled bovine serum albumin leak. Cyclooxygenase inhibition with indomethacin, ibuprofen, or meclofenamate prevented the PMA-induced increase in albumin leak without affecting the PVR increase. These results suggest that cyclooxygenase-mediated products of arachidonic acid mediate the PMA-induced increase in vascular permeability to both water and protein.  相似文献   

5.
The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.  相似文献   

6.
The effect of adrenal and gonadal hormones on vascular permeability induced by intradermal injection of prostaglandins (PGs) E1, F2alfa, arachidonic acid and compound 48/80 have been examined in the rate. PGE1, arachidonic acid and compound 48/80 produced an increase in local vascular permeability. PGF2alfa decreased the action of these vasoactive agents, when it was injected in a mixture intradermally with PGE1, arachidonic acid and compound 48/80. Vasoactive response induced by PGE1, arachidonic acid and compound 48/80 was inhibited by the removal of adrenals and testes, and it was restored to normal by injection either of cortisol, deoxycorticosterone (DOC) or testosterone. In adrenalectomized rats, no change was observed in the inhibition of vascular permeability elicited by PGF2alfa response to compound 48/80. The blocking effect of PGF2alfa on vascular permeability evoked by PGE1 and arachidonic acid showed a considerable decrease. After orchidectomy the inhibitory effect of PGF2alfa on the vascular permeability induced by arachidonic acid and compound 48/80 was completely blocked, while in the case of PGE1 the inhibition was partial. Testosterone treatment restored the anti-inflammatory effect of PGF2alfa against compound 48/80. Ovariectomy was without any effect on vascular response.  相似文献   

7.
We infused A23187, a calcium ionophore, into the pulmonary circulation of dextran-salt-perfused isolated rabbit lungs to release endogenous arachidonic acid. This led to elevations in pulmonary arterial pressure and to pulmonary edema as measured by extravascular wet-to-dry weight ratios. The increase in pressure and edema was prevented by indomethacin, a cyclooxygenase enzyme inhibitor, and by 1-benzylimidazole, a selective inhibitor of thromboxane (Tx) A2 synthesis. Transvascular flux of 125I-albumin from vascular to extravascular spaces of the lung was not elevated by A23187 but was elevated by infusion of oleic acid, an agent known to produce permeability pulmonary edema. We confirmed that A23187 leads to elevations in cyclooxygenase products and that indomethacin and 1-benzylimidazole inhibit synthesis of all cyclooxygenase products and TxA2, respectively, by measuring perfusate levels of prostaglandin (PG) I2 as 6-ketoprostaglandin F1 alpha, PGE2, and PGF2 alpha and TxA2 as TxB2. We conclude that release of endogenous pulmonary arachidonic acid can lead to pulmonary edema from conversion of such arachidonic acid to cyclooxygenase products, most notably TxA2. This edema was most likely from a net hydrostatic accumulation of extravascular lung water with an unchanged permeability of the vascular space, since an index of permeability-surface area product (i.e., transvascular albumin flux) was not increased.  相似文献   

8.
Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.  相似文献   

9.
Increased vascular permeability was induced by prostaglandin E2 (PGE1), arachidonic acid and compound 48/80 in male rats. Natural ACTH in a dose-dependent manner inhibited Evans blue exudation elicited by arachidonic acid or compound 48/80, however, it was ineffective against PGE1. ACTH4--10 (d-Phe7 and 1-Phe7) injected together with the prophlogistic agents depressed the arachidonic acid and compound 48/80 induced vascular reaction. Indomethacin pretreatment inhibited the effect of arachidonic acid on vascular permeability suggesting that arachidonic acid evoked its vascular activity by means of affecting the endogenous synthesis of prostaglandins and, on the other hand, the prostaglandin system played a role in the vascular permeability inducing effect of compound 48/80. ACTH4--10 peptide fragments free of steroidogenic action and natural ACTH inhibited locally the in vivo formation of PGS from arachidonic acid in the rat skin, resulting in a nonspecific decrease of local inflammation.  相似文献   

10.
Although thromboxane and prostacyclin (PGI2) have long been described as major controllers of pulmonary vascular resistance, little has been reported on the characteristics of the interactions between the two arachidonic acid products. The current study uses segmental vascular resistance and compliance measurements to evaluate the actions of thromboxane and PGI2 in isolated blood-perfused rat lung. The thromboxane analogue U-46619 increases pulmonary vascular resistance by increasing only small artery resistance and decreases pulmonary vascular compliance in the middle compartment. Among the vascular effects of U-46619 are a maximum increase in resistance (RmaxU-46619) of 60.3 +/- 15.6 cmH2O.l-1.min.100 g-1 and a concentration required for 50% of maximum increase (K0.5,U-46619) of 1.60 +/- 0.85 nM for small artery resistance, a minimum vascular compliance (CminU-46619) of -0.93 +/- 0.58 cmH2O, and a K0.5,U-46619 of 1.10 +/- 1.60 nM for middle compartment compliance. Similar results were obtained for total resistance and total compliance. The effects of PGI2 on thromboxane-induced resistance and compliance changes were evaluated using K0.5,PGI2, RmaxPGI2, and CmaxPGI2 at each dose of thromboxane. PGI2 was more effective in reversing the thromboxane constriction at higher concentrations of thromboxane. These data show that the absolute concentration of PGI2 and thromboxane and not a simple ratio of thromboxane to PGI2 determines vascular tone.  相似文献   

11.
Inflammatory reactions induced by TPA (12-O-tetradecanoylphorbol 13-acetate)-type tumor promoters, including TPA, teleocidin and aplysiatoxin, and chemical mediators responsible for such inflammatory reactions were analyzed. The tumor promoter dissolved in a 0.8% sodium carboxymethyl cellulose solution was injected into a subcutaneous air pouch preformed on the dorsum of rats. Within 30 min after the injection, vascular permeability as measured by the leakage of labeled albumin into the pouch fluid was increased, with a concomitant increase in histamine level. This increase in vascular permeability was inhibited by a histamine antagonist, pyrilamine, and a serotonin antagonist, methysergide. Vascular permeability at 4 h was not inhibited by pyrilamine or methysergide but was inhibited by a cyclooxygenase inhibitor, indomethacin, with a parallel decrease in the prostaglandin E2 level in the pouch fluid. These results suggest that the TPA-type tumor promoters induce inflammation by the mechanism of mast cell degranulation within a short period, this being followed by the stimulation of arachidonic acid metabolism. The mechanism of the in vivo effect of the TPA-type tumor promoters is discussed and compared with in vitro effects that we have previously reported.  相似文献   

12.
Mechanism of phosgene-induced lung toxicity: role of arachidonate mediators   总被引:1,自引:0,他引:1  
We have previously shown that phosgene markedly increases lung weight gain and pulmonary vascular permeability in rabbits. The current experiments were designed to determine whether cyclooxygenase- and lipoxygenase-derived mediators contribute to the phosgene induced lung injury. We exposed rabbits to phosgene (1,500 ppm/min), killed the animals 30 min later, and then perfused the lungs with a saline buffer for 90 min. Phosgene markedly increased lung weight gain, did not appear to increase the synthesis of cyclooxygenase metabolites, but increased 10-fold the synthesis of lipoxygenase products. Pre- or posttreatment with indomethacin decreased thromboxane and prostacyclin levels without affecting leukotriene synthesis and partially reduced the lung weight gain caused by phosgene. Methylprednisolone pretreatment completely blocked the increase in leukotriene synthesis and lung weight gain. Posttreatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized competitive inhibitor of arachidonic acid metabolism, or the leukotriene receptor blockers, FPL 55712 and LY 171883, also dramatically reduced the lung weight gain caused by phosgene. These results suggest that lipoxygenase products contribute to the phosgene-induced lung damage. Because phosgene exposure did not increase cyclooxygenase synthesis or pulmonary arterial pressure, we tested whether phosgene affects the lung's ability to generate or to react to thromboxane. Infusing arachidonic acid increased thromboxane synthesis to the same extent in phosgene-exposed lungs as in control lungs; however, phosgene exposure significantly reduced pulmonary vascular reactivity to thromboxane but not to angiotension II and KCl.  相似文献   

13.
The antioxidative effect of α-tocopherol incorporated into lecithin liposomes was studied. Lipid peroxidation of liposome membranes, assayed as malondialdehyde production, was catalyzed by ascorbic acid and Fe2+. The peroxidation reaction, which did not involve the formation of singlet oxygen, superoxide, hydrogen peroxide, or a hydroxyl radical, was inhibited by α-tocopherol and a model compound of α-tocopherol, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (TMC), but not by phytol, α-tocopherylquinone, or α-tocopheryl acetate. One mole of α-tocopherol completely prevented peroxidation of about 100 moles of polyunsaturated fatty acid. Decrease in membrane fluidity by lipid peroxidation, estimated as increase of fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in the membrane, was also inhibited by α-tocopherol and TMC, reflecting their antioxidant functions. Cholesterol did not act as an antioxidant, even when incorporated in large amount into the liposome membranes, but it increased the antioxidative efficiency of α-tocopherol. When a mixture of liposomes with and without α-tocopherol was incubated with Fe2+ and ascorbic acid, α-tocopherol did not protect the liposomes not containing α-tocopherol from peroxidation. However, preincubation of the mixture, or addition of Triton X-100 allowed the α-tocopherol to prevent peroxidation of the liposomes not containing α-tocopherol. In contrast, in similar experiments, liposomes containing TMC prevented peroxidation of those without TMC without preincubation. Tocopherol in an amount so small as to exhibit only a slight antioxidative effect was oxidized when incorporated in egg lecithin liposomes, but it mostly remained unoxidized when incorporated in dipalmitoyllecithin liposomes, indicating that oxygen activated by ascorbic acid-Fe2+ does not oxidize α-tocopherol directly. Thus, decomposition of α-tocopherol may be caused by its interaction with peroxy and/or alkoxyl radicals generated in the process of lipid peroxidation catalyzed by Fe2+ and ascorbic acid.  相似文献   

14.
Thromboxane-induced pulmonary vasoconstriction: involvement of calcium   总被引:3,自引:0,他引:3  
Infusion of tert-butyl hydroperoxide (t-bu-OOH) or arachidonic acid into rabbit pulmonary arteries stimulated thromboxane B2 (TxB2) production and caused pulmonary vasoconstriction. Both phenomena were blocked by cyclooxygenase inhibitors or a thromboxane synthase inhibitor. The increase in pulmonary arterial pressure caused by either t-bu-OOH or arachidonic acid infusion correlated with the concentration of TxB2 in the effluent perfusate. The concentration of TxB2 in the effluent perfusate, however, was always 10-fold greater after arachidonic acid infusion. In the rabbit pulmonary vascular bed lipoxygenase products did not appear involved in the vasoactive response to t-bu-OOH or exogenous arachidonic acid infusion. Calcium entry blockers or a calcium-free perfusate prevented the thromboxane-induced pulmonary vasoconstriction. Calmodulin inhibitors also blocked the pulmonary vasoconstriction induced by t-bu-OOH without affecting the production of TxB2 or prostacyclin. These results suggest that thromboxane causes pulmonary vasoconstriction by increasing cytosol calcium concentration.  相似文献   

15.
We studied the effects of the potent inflammatory mediator, platelet-activating factor (PAF), on vascular permeability in airways (and other tissues) of guinea pigs by measuring extravasation of circulating Evans blue dye. PAF caused a dose-dependent increase in vascular permeability. At 1 ng/kg iv, PAF caused an increase in Evans blue extravasation of 220% (P less than 0.05) in the trachea, with the greatest effect at a dose of 100 ng/kg (858%; P less than 0.01). Histamine (150 micrograms/kg iv) caused a 320% increase over base line in the trachea and 200% in main bronchi; this effect was equivalent to that induced by 10 ng/kg PAF in the trachea and 1 ng/kg in main bronchi. The duration of effect of PAF was greatest in main bronchi (less than 10 min). Platelet depletion with a cytotoxic antibody, or the cyclooxygenase inhibitor, indomethacin, or the cyclooxygenase-lipoxygenase inhibitor, BW 7556, did not affect the vascular permeability response to PAF. The PAF-receptor antagonist, BN 52063, inhibited Evans blue extravasation in the airways in a dose-dependent manner, with complete inhibition at 5 mg/kg. Thus PAF-induced airway vascular leakage is mediated by specific receptors but not by products of arachidonic acid metabolism or by platelets. Increased airway microvascular leakage induced by PAF may lead to plasma extravasation and airway edema, factors that may contribute to the airway narrowing and hyperresponsiveness induced by PAF.  相似文献   

16.
Because leukotrienes and prostaglandins are inflammatory mediators derived from arachidonic acid, their potential role in oleic acid-induced lung injury was evaluated in control and in essential fatty acid-deficient (EFAD) rats depleted of arachidonic acid substrate. In control rats, oleic acid (0.06 ml/kg iv) increased the pulmonary permeability index (measured by scintigraphy) from -10 +/- 13 x 10(-6) s-1 to 217 +/- 20 x 10(-6) s-1 and 118 +/- 13 x 10(-6) s-1 at 5 and 50 min (P less than 0.05), respectively. It also caused arterial hypoxemia at 30 min (P less than 0.05). Compared with saline controls, oleic acid increased bronchoalveolar lavage fluid levels of immunoreactive (i) LTC4/D4, iLTB4, (P less than 0.01), and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) (P less than 0.05). In EFAD rats, oleic acid failed to significantly increase the lung permeability index at 5 and 50 min. In contrast to control rats, oleic acid failed to cause hypoxemia in the EFAD rats. Bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha after oleic acid in EFAD rats were lower compared with oleic acid controls, whereas iLTC4/D4 in the oleic acid EFAD group was not decreased. Treatment with intraperitoneal ethyl arachidonate (400 mg over 2 wk) reversed the resistance of EFAD rats such that the pulmonary edema (P less than 0.05) was evident after oleic acid. This latter group also manifested a significant (P less than 0.05) rise in the bronchoalveolar lavage levels of iLTB4 and i6-keto-PGF1 alpha. These results suggest that arachidonic acid metabolites contribute to oleic acid-induced pulmonary permeability.  相似文献   

17.
Leukocyte trapping in the pulmonary circulation may be an important component of the lung vascular injury response to endotoxin, but mediators of the pulmonary leukostasis and increased lung vascular permeability are unknown. The leukocyte 5-lipoxygenation pathway of arachidonic acid metabolism yields highly biologically active products including leukotrienes C4 and D4 (formerly slow reacting substance of anaphylaxis) and the potent chemotaxin, leukotriene B4. A major product of 5-lipoxygenation is 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), for which a sensitive, stable isotope dilution assay employing combined gas chromatography-mass spectrometry is available. This assay was used to test the hypothesis that 5-lipoxygenation products might participate in pulmonary vascular responses to endotoxin. We measured 5-HETE concentrations in lung lymph at three intervals during endotoxemia in unanesthetized sheep. Concentrations of 5-HETE in lung lymph exceeded those in aortic blood plasma. Lymph 5-HETE concentrations increased from 1.7±0.3 (mean ± SEM, N = 7) ng/ml during baseline to peak values of 6.1±1.8 ng/ml (p < 0.05) during the hours after endotoxemia and preceeding the steady state increased lung vascular permeability response. During the increased permeability steady state from 240 to 270 minutes after endotoxin, lymph 5-HETE concentrations (1.4±0.3 ng/ml) and lymph 5-HETE flow (i.e., 5-HETE concentration x lung lynph flow rate) returned to baseline values. Although these observations are consistent with the hypothesis that 5-lipoxygenation products participate in the pulmonary vascular injury response to endotoxin, lymph 5-HETE concentrations did not correlate with any of the other experimental measurements. It may be only coincidence that the increase in lymph 5-HETE concentrations appeared contemporaneous with the onset of lung vascular injury.  相似文献   

18.
Arachidonic acid causes dose-dependent increases in pulmonary vascular resistance in perinatal lambs. The specific metabolites that produce this effect are not known; however, a role for thromboxanes (TX's), potent constrictors of vascular smooth muscle, has been proposed. The effects of a specific inhibitor of TX synthase, OKY-1581, were tested in newborn and ventilated fetal lambs using an in situ pump-perfused lower left lobe preparation. Pulmonary and systemic responses of newborns and ventilated fetuses to infusions of arachidonic acid were evaluated in the presence and absence of OKY-1581. Increases in pulmonary vascular resistance caused by arachidonic acid were diminished by TX synthase inhibition. The degree of systemic hypotension observed with arachidonic acid infusions was significantly greater in animals receiving OKY-1581 than in animals without the inhibitor. The effect of OKY-1581 on periods of hypoxia was also evaluated in newborn lambs. There were no significant differences in the hypoxic pressor response in lambs with and without TX synthase inhibition. These results suggest that OKY-1581 can reduce most of the pulmonary vasoconstriction produced by arachidonic acid in perinatal lambs.  相似文献   

19.
In order to verify the role played by oxidation in the budding of potato tubers (Solanum tuberosum L. cv. Kennebec), the physiological events occurring below bud at 4°C have been studied for a period of 6 months. The low temperature storage induced an increase in the degree of unsaturation and a decrease in the ratio of saturated/unsaturated fatty acids of membrane polar lipids with a subsequent increase of lipid hydroperoxides (LOOH). Cold stress increased both enzymatic antioxidative activities (superoxide dismutase, SOD, E.C.1.15.1.1; catalase, CAT, E.C. 1.11.1.6), and α-tocopherol levels thus protecting membrane's polyunsaturated lipids. Between 0 and 15 days of storage SOD/CAT ratio, α-tocopherol, LOOH levels and the degree of lipid unsaturation showed strong variations. After 30 to 120/150 days the antioxidative system seemed to reach a homeostasis different from that of time 0, accompanied by a constant increase of indole-3-acetic acid (IAA) after 60 days. The antioxidative system, after 150 days, lost its efficiency while LOOH levels were maintained higher than time 0 and IAA concentration was sufficient to allow sprouting.  相似文献   

20.
We determined in anesthetized sheep whether isoproterenol, a beta-adrenergic agonist, prevents the increases in pulmonary fluid and protein exchange produced by thrombin-induced intravascular coagulation. Seven sheep were infused intravenously with 0.05 micrograms X kg-1 X min-1 isoproterenol before infusion of alpha-thrombin, and six sheep were infused with alpha-thrombin only and served as control subjects. The marked increases in pulmonary lymph flow and lymph protein clearance in the control thrombin group were attenuated (P less than 0.05) in the isoproterenol group in association with a higher pulmonary blood flow (P less than 0.05) and a lower pulmonary vascular resistance (P less than 0.05) in the isoproterenol group and with similar increases in pulmonary arterial and pulmonary arterial wedge pressures in both groups. The decreases in fluid and protein fluxes produced by isoproterenol are related to its beta-adrenergic properties because propranolol, a beta-adrenergic antagonist, blocked the protective effects of isoproterenol in a second group of sheep infused with propranolol, isoproterenol, and thrombin. Raising left atrial pressure to test for changes in vascular permeability increased protein flux to a much greater extent in the thrombin control group than in the isoproterenol group challenged with thrombin. The data suggest that isoproterenol attenuated the increase in fluid and protein fluxes produced by thrombin-induced intravascular coagulation by a permeability-decreasing mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号