首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ethidium bromide (EB) demyelinating model was associated with interferon beta (IFN-β) to evaluate acetylcholinesterase (AChE) activity in the striatum (ST), hippocampus (HP), cerebral cortex (CC), cerebellum (CB), hypothalamus (HY), pons (PN) and synaptosomes from the CC. Rats were divided into four groups: I control (saline), II (IFN-β), III (EB) and IV (EB and IFN-β). After 7, 15 and 30 days rats (n = 6) were sacrificed, and the brain structures were removed for enzymatic assay. AChE activity was found to vary in all the brain structures in accordance with the day studied (7–15–30 days) (P < 0.05). In the group III, there was an inhibition of the AChE activity in the ST, CB, HY, HP and also in synaptosomes of the CC (P < 0.05). It was observed that IFN-β per se was capable to significantly inhibit (P < 0.05) AChE activity in the ST, HP, HY and synaptosomes of the CC. Our results suggest that one of the mechanisms of action of IFN-β is through the inhibition of AChE activity, and EB could be considered an inhibitor of AChE activity by interfering with cholinergic neurotransmission in the different brain regions.  相似文献   

2.
The role of orexin in the organization of the sleep–wake cycle (SWC) is well known. The aim of this study was to examine the timing of the orexinergic system formation in rat postnatal ontogenesis and to assess the role of orexin A in the SWC organization under normal conditions and after prenatal hypoxia undergone on days 14 and 19 of embryogenesis. The SWC was investigated in 30-day-old rats with electrodes implanted into the somatosensory and occipital cortex. Immunoreactivity within the orexigenic structures of the lateral hypothalamus was analyzed. It was shown that in control 14-day-old animals the orexinergic structures were in their formative stage, whereas in 30-day-old rats they were already as formed as in adults. In 14-day-old rats, prenatal hypoxia evoked retarded formation of the orexinergic system. In 30-day-old animals, hypoxia undergone in the prenatal period increased the activity of the orexinergic system, which was higher in animals exposed to hypoxia on day 19 than on day 14 of gestation. In 30-day-old rats, these changes were reflected in the SWC formation in the form of shorter slow-wave sleep, more fitful sleep and increased number of transitions from slow- to fast-wave sleep. The results obtained are discussed in the light of the adaptive-compensatory role of the orexigenic system in postnatal ontogenesis after prenatal damage to the central nervous system.  相似文献   

3.
Abstract: The influence of prenatal hypoxia on subsequent brain development in the young rat was investigated by examining body and brain weight, cerebral cortex wet weight, protein and DNA concentrations, acetylcholinesterase (AChE) activity, 3-quinuclidinyl benzilate (QNB)-binding levels, the relative amounts of protein in various subcellular fractions, and the in vivo incorporation of [14C]lysine into the protein of homogenate and subcellular fractions. Exposure of pregnant females to a mild hypoxia (9.1% Os, 10 h per day for the 9-11 days preceding birth) resulted in a reduced body weight in the pups at days 1 and 5 after birth; total cortical DNA was reduced but brain weight and protein content were unaffected, leading to a higher protein/DNA ratio in prenatally hypoxic pups. By 10 days of age these differences between prenatally hypoxic and control animals were no longer apparent. There were no differences between prenatally hypoxic and control animals in AChE and QNB binding per milligram cortex protein. The relative amount of synaptic membrane protein from the cerebral cortex was reduced at day 1 in prenatally hypoxic animals and the synaptic membrane fraction showed a higher level of incorporation of [14C]lysine on days 1, 5, and 10. The developmental profile of [14C]lysine incorporation showed a peak on day 10 which was higher in prenatally hypoxic rats. By 46 days after birth little difference could be found between prenatally hypoxic and control animals.  相似文献   

4.
Aluminum (Al), a neurotoxic agent, has been associated with Alzheimer’s disease (AD), which is characterized by cholinergic dysfunction in the central nervous system. In this study, we evaluated the effect of long-term exposure to aluminum on acetylcholinesterase (AChE) activity in the central nervous system in different brain regions, in synaptosomes of the cerebral cortex and in erythrocytes. The animals were loaded by gavage with AlCl3 50 mg/kg/day, 5 days per week, totalizing 60 administrations. Rats were divided into four groups: (1) control (C); (2) 50 mg/kg of citrate solution (Ci); (3) 50 mg/kg of Al plus citrate (Al + Ci), and (4) 50 mg/kg of Al (Al). AChE activity in striatum was increased by 15% for Ci, 19% for Al + Ci and 30% for Al, when compared to control (P < 0.05). The activity in hypothalamus increased 23% for Ci, 26% for Al + Ci and 28% for Al, when compared to control (P < 0.05). AChE activity in cerebellum, hippocampus and cerebral cortex was decreased by 11%, 23% and 21% respectively, for Al, when compared to the respective controls (P < 0.05). AChE activity in synaptosomes was increased by 14% for Al, when compared to control (P < 0.05). Erythrocyte AChE activity was increased by 17% for Al + Ci and 11% for Al, when compared to control (P < 0.05). These results indicate that Al affects at the same way AChE activity in the central nervous system and erythrocyte. AChE activity in erythrocytes may be considered a marker of easy access of the central cholinergic status.  相似文献   

5.
Localization of 3H-imipramine binding sites in the cerebral cortex of rats was studied on the 19th day of prenatal development and on the 3d and 14th days of postnatal ontogenesis. Imipramine was injected into rats on days 17, 18 and 19 of gestation. The maximal imipramine receptor density was found in cortex layers IV-V. The therapeutic doses of imipramine provoked marked stimulation of the formation of imipramine receptors on the 3d day of postnatal development. However, on the 14th day the 3H-imipramine binding level was stabilized.  相似文献   

6.
By studying the effects of gangliosides (G) on learning and memory we have found that i.p. administration of G led to a decrease in AC activity in the cortex (Cx) and striatum (Str) as well as in the threshold of the sensitivity of striatal neurons to the effect of cholinergic agonists. G also modified the sensitivity of AC from the Cx and Str to such agents as Gpp[NH]p and forskolin. The aim of this work was to analyze the correlation between the changes in the activity of AC in the Cx and Str, concentration of G in these brain structures as well as formation of motor reactions of newborn rats during the first month of postnatal ontogenesis. It was found that new born rats develop normal body rotation by sixth day, locomotion by fifteenth day and stabilization of locomotor activity and supporting body balance by 20–22nd day. As shown previously, the concentration of gangliosides in the Cx and Str is gradually increasing during the first month of animal development. The activity of AC (pmol cAMP/min/mg of protein) in the Cx was found to decrease from 34.75 to 4.09 and in the Str from 46.00 to 11.67 during the first week after birth. However in the periods of formation of general behavioural reactions we observed a statistically significant increase in AC activity: in the Str on 10th and 26th days (p < 0.01) and in the Cx from 10th to 19th days (p < 0.05) compared to the AC activity on 5th and 30th days. Thus, formation of locomotor activity and posture‐tonic reactions during development of rats in early postnatal ontogenesis correlates with increasing concentration of G and basal activity of AC. Supported by RFBR (99‐04‐49751) and RAS (99‐06‐287).  相似文献   

7.
The effect of different L-phenylalanine (Phe) concentrations (0.12-12.1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase activities was investigated in homogenates of adult rat whole brain and frontal cortex at 37 degrees C. AChE, (Na+,K+)-ATPase and Mg2+-ATPase activities were determined after preincubation with Phe. AChE activity in both tissues showed a decrease up to 18% (p<0.01) with Phe. Whole brain Na+,K+-ATPase was stimulated by 30-35% (p<0.01) with high Phe concentrations, while frontal cortex Na+,K+-ATPase was stimulated by 50-55% (p<0.001). Mg2+-ATPase activity was increased only in frontal cortex with high Phe concentrations. It is suggested that: a) The inhibitory effect of Phe on brain AChE is not influenced by developmental factors, while the stimulation of Phe on brain Na+,K+-ATPase is indeed affected; b) The stimulatory effect of Phe on rat whole brain Na+,K+-ATPase is decreased with age; c) Na+,K+-ATPase is selectively more stimulated by high Phe concentrations in frontal cortex than in whole brain homogenate; d) High (toxic) Phe concentrations can affect Mg2+-ATPase activity in frontal cortex, but not in whole brain, thus modulating the amount of intracellular Mg2+.  相似文献   

8.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

9.
Phosphate activated glutaminase (PAG) was assayed in whole homogenate and synaptosomes of cerebral cortex from normal or fasted for 120 h rats. The specific activity (s.a.) of PAG was found diminished by 25% in the whole homogenate from the fasted animals compared to the normal. On the contrary, fasting did not affect PAG s.a. of the synaptosomal fraction. Reconstitution experiments showed that when the deproteinized supernatant of the 12,500g centrifugation from the fasted rats was added to the synaptosomes from either fed or fasted animals the PAG activity was diminished but there was no change when the corresponding supernatant from the fed animals was added to the synaptosomes from both conditions. When leucine at 5mM was added to the homogenate or to synaptosomes from fed or fasted animals the s.a. of PAG was significantly decreased. Even in the presence of aminooxyacetate the effect of leucine was observed. Branched chain amino acids i.e. leucine, isoleucine and valine at 0.5 mM each added to synaptosomes again decreased PAG activity. The addition of ketone bodies had no effect. It is suggested that leucine, because PAG has been implicated in the supply of transmitter glutamate, might be an important regulator of the pool of this neurotransmitter.  相似文献   

10.
11.
The aim of study was to investigate the physiological development of the brain and behaviour in rats subjected to prenatal hypoxia on the 13.5th day of embryogenesis. We have found that such rats manifested a delayed physiological development and a change in nervous tissue of the sensorimotor cortex, as well a disturbed formation of motor responses during the first month of postnatal ontogenesis. During maturation these modifications were in part compensated, however we observed a decrease of the rats' ability to learn new forepaw movements. The destruction of the brain tissue and the modification of neurons composition in the sensorimotor cortex correlated with changes of behaviour at different stages of ontogenesis. Thus, changes of the conditions under which an organism develops during embryogenesis, predetermine a disturbance in ontogenesis and the learning ability.  相似文献   

12.
Summary In the present study we have investigated the effect of prenatal hypoxia on expression of amyloid precursor protein (APP) and some metallopeptidases, which regulate β-amyloid peptide (Aβ) levels (neprilysin (NEP) and endothelin-converting enzyme (ECE-1)) in the cortex of rats during different periods of postnatal development. We have found that the level of APP in the sensorimotor cortex (SMC) of rats, analysed by Western blotting, increases from days 1 to 5 of postnatal development and then steadily decreases with age, with the most dramatic decline in the period from day 180 to 600. In the cortex of rats subjected to prenatal hypoxia on day 13.5 of embryogenesis, the postnatal levels of APP were higher than in the control. Secretion of the soluble form of APP (sAPP) by α-secretase was found to be the most active on day 30 of postnatal development and there was a significant decrease in the production of sAPP after prenatal hypoxia. NEP was found to be expressed in the cortex of rats only at the early stages of postnatal development and it was barely detectable in adult rats. The decline of NEP levels during ageing might contribute to accumulation of Aβ in later life in humans. Prenatal hypoxia resulted in a significant decrease of NEP expression on day 10, but its level was recovered when animals were preconditioned to mild hypoxia. A similar phenomenon was observed when the expression of ECE-1 was analysed. Overall, prenatal hypoxia leads to significant changes in the levels of APP and expression of metallopeptidases involved in amyloid metabolism during all postnatal life and preconditioning to hypoxia appeared to be neuroprotective.  相似文献   

13.
This study investigated whether physical exercise would reverse proline-induced performance deficits in water maze tasks, as well as its effects on brain-derived neurotrophic factor (BDNF) immunocontent and brain acetylcholinesterase (AChE) activity in Wistar rats. Proline administration followed partial time (6th–29th day of life) or full time (6th–60th day of life) protocols. Treadmill exercise was performed from 30th to 60th day of life, when behavioral testing was started. After that, animals were sacrificed for BDNF and AChE determination. Results show that proline impairs cognitive performance, decreases BDNF in cerebral cortex and hippocampus and increases AChE activity in hippocampus. All reported effects were prevented by exercise. These results suggest that cognitive, spatial learning/memory, deficits caused by hyperprolinemia may be associated, at least in part, to the decrease in BDNF levels and to the increase in AChE activity, as well as support the role of physical exercise as a potential neuroprotective strategy.  相似文献   

14.
Insulin and glucagon degradation by rat kidney homogenates and subcellular fractions was examined under a variety of conditions including high and low substrate concentrations, at pH 4 and pH 7, with and without glutathione. At high insulin concentration (4.1 · 10−5 M) insulin degradation by the homogenate was greatest at pH 4 but at low insulin concentration (1 · 10−10 M) insulin degradation was greatest at pH 7. At either high or low glucagon concentration glucagon degradation by the homogenate was greatest at pH 7. Glutathione at pH 7 stimulated insulin degradation at high insulin concentrations and inhibited insulin degradation at low concentrations. Glucagon degradation at pH 7 was inhibited at both high and low concentrations of glucagon by glutathione.Separation of kidney into cortex and medulla prior to homogenation produced a pattern of insulin and glucagon degradation identical to the whole homogenate but glucagon degradation by the medulla was greater than by the cortex.Examination of degradation by subcellular fractions revealed that at high concentration at neutral pH most insulin was degraded by the 100 000 × g pellet but at low insulin concentrations over 90% of the activity was in the 100 000 × g supernatant. At pH 7, at both high and low concentrations, most glucagon-degrading activity was in the 100 000 × g pellet, although the cytosol also had activity. At pH 4 most degradation occurred in the lysosomal fractions.Separation into cortex and medulla again showed similar distribution of activity as the whole gland with the medulla having more glucagon-degrading activity than the cortex. With low insulin concentrations the cortex 100 000 × g supernatant had higher relative specific activities than the medulla supernatant.Examination of recoveries of enzyme activity revealed that the subcellular fractions consistently had markedly less insulin-degrading activity than the original homogenate. This loss of activity was only discernible when insulin degradation was performed at pH 7 at low substrate concentrations. Comparable losses of glucagon-degrading activity were not seen.  相似文献   

15.
Abstract: We have investigated the postnatal development of cerebellar glutamate decarboxylase (GAD), acetylcholine esterase (AChE), 2′,3′-cyclic nucleotide 3′-phosphohydrolase (CNPase), arylsulfatase, succinate dehydrogenase (SDH), Na,K-ATPase, arylesterase, and lactate dehydrogenase (LDH) activities in homozygous (jj) Gunn rats, comparing them with those in heterozygotes. Also examined were GAD activities in the anterior and posterior parts of the vermis cerebelli on day 13. The specific activities of GAD on the basis of wet weight (g) were lower in jj rats after day 10, and remained unchanged from days 10 to 15 in jj rats with severe hypoplasia. On day 13, GAD on wet weight and protein (mg) bases in the anterior part OfJJ rats was lower than that in the posterior parts of both rats. On the contrary, AChE activities based on wet weight after day 10 and on protein after day 5 in jj rats were significantly elevated. While correlations of GAD on a wet weight basis with the cerebellar wet weight were positive after day 8, those of AChE on wet weight and protein bases were inverse after days 10 and 5, respectively. CNPase and SDH activities based on protein in jj rats were higher after day 15 and showed inverse correlations with the cerebellar wet weight after days 15 and 10, respectively. Arylsulfatase activities on wet weight and protein bases in jj rats, which had a peak on day 20, were significantly high after days 10 and 8, respectively. Arylsulfatase activities by wet weight on days 10 to 20 and by protein after day 8 were inversely correlated with cerebellar wet weight in jj rats. These results suggest that the cerebellar inhibitory neurons, the axons of which make synaptic connections to the target cells from days 10 to 15, are selectively affected by bilirubin inji rats with severe hypoplasia. The enhanced arylsulfatase activity in jj rats on days 10 to 20 may be due to the increased number of lysosomes, suggesting that cell damage by bilirubin followed by cell destruction occurs. A high level of AChE activity in jj rats appears to show a relative increase in density of the mossy fibers in the hypoplastic cerebellum.  相似文献   

16.
A high acetylcholinesterase (AChE) activity was found associated with pure cholinergic synaptosomes prepared from Torpedo electric organ. This activity was bound to the presynaptic plasma membrane upon subfractionation on sucrose density gradients. It was not solubilized in the presence of 2 M MgCl2 but in the presence of Triton X 100. This presynaptic AChE activity corresponded to a hydrophobic form of the enzyme with a sedimentation coefficient of 5.5 S in our conditions. More than 80% of the AChE activity of intact synaptosomes was externally oriented. The presynaptic AChE activity could represent as much as 25% of the total activity in Torpedo electric organ.  相似文献   

17.
Aluminum (Al), oxidative stress and impaired cholinergic functions have all been related to Alzheimer's disease (AD). The present study evaluates the effect of aluminum on acetylcholinesterase (AChE) and lipid peroxidation in the mouse brain. Mice were loaded by gavage with Al 0.1 mmol/kg/day 5 days per week during 12 weeks. The mice were divided into four groups: (1) control; (2) 10 mg/mL of citrate solution; (3) 0.1 mmol/kg of Al solution; (4) 0.1 mmol/kg of Al plus 10 mg/mL of citrate solution. AChE activity was determined in the hippocampus, striatum, cortex, hypothalamus and cerebellum and lipid peroxidation was determined in the hippocampus, striatum and cortex. An increase of AChE activity was observed in the fourth group (Al + Ci) in the hippocampus (36%), striatum (54%), cortex (44%) and hypothalamus (22%) (p<0.01). The third group (Al) presented a decrease of AChE activity in the hypothalamus (20%) and an enhancement in the striatum (27%). Lipid peroxidation, measured by TBARS (thiobarbituric acid reactive substances), was elevated in the hippocampus and cerebral cortex when compared with the control (p < 0.01). The effect of aluminum on AChE activity may be due to a direct neurotoxic effect of the metal or perhaps a disarrangement of the plasmatic membrane caused by increased lipid peroxidation.  相似文献   

18.
The activity of the key enzyme of serotonin biosynthesis--tryptophan-5-hydroxylase (T-5-H) was investigated in the synaptosomes of the motor cortex and caudate nucleus of the rabbit brain 30 min or 5 days after single injection of opioid tetrapeptidamide Tyr-D-Ala-Gly-Phe-NH2 (TPA). TPA was injected subcutaneously at a dose of 500 micrograms/kg of rabbit body weight. T-5-H activity in caudate nucleus synaptosomes was two times higher than that of the motor cortex synaptosomes and accounted for 159.67 and 80.84 pmoles of formed 5-hydroxytryptophan/mg protein per hour. 30 min after single injection of TPA the enzyme activity in the synaptosomes of the motor cortex and caudate nucleus decreased by 64.0 and 43.0%, respectively. 5 days following single TPA injection T-5-H activity in the motor cortex synaptosomes increased by 68.4% and in caudate nucleus synaptosomes decreased by 35.6%. Thus, it was established that TPA displayed a pronounced effect on T-5-H activity. The delayed effect of opioid TPA on T-5-H activity was discovered which was manifested on day 5 after the single injection. Possible mechanisms of TPA effect on T-5-H are discussed.  相似文献   

19.
20.
Effect of serotonin (5-HT) deficit produced by administration of p-chlorophenylalanine at a dose of 400 mg/kg to pregnant female mice at the 8th day of gestation on the subsequent behavior of their offspring (hybrids F1(C57BL/CBA)) was studied. The 5-HT deficit in prenatal ontogenesis leads to the following behavioral changes: (1) females and males of the experimental group have a higher level of the explorative activity in the “open field” than control animals; (2) in females of the experimental group at the age of 90 days, unlike control females and males of experimental and control groups, the explorative activity is extinguished at the threefold testing in the “open field”; (3) females of the experimental group have a decreased level of anxiety in tests “elevated plus-maze” and the “dark-light” chamber. Males of the experimental group, on the contrary, have an elevated level of anxiety. The obtained data show that the 5-HT deficit at the prenatal period affects various aspects of behavior. The degree of the changes produced by the prenatal 5-HT deficit can have different manifestations depending on sex of the animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号