首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A dual‐enzyme process aiming at facilitating the purification of trehalose from maltose is reported in this study. Enzymatic conversion of maltose to trehalose usually leads to the presence of significant amount of glucose, by‐product of the reaction, and unreacted maltose. To facilitate the separation of trehalose from glucose and unreacted maltose, sequential conversion of maltose to glucose and glucose to gluconic acid under the catalysis of glucoamylase and glucose oxidase, respectively, is studied. This study focuses on the hydrolysis of maltose with immobilized glucoamylase on Eupergit® C and CM Sepharose. CM Sepharose exhibited a higher protein adsorption capacity, 49.35 ± 1.43 mg/g, and was thus selected as carrier for the immobilization of glucoamylase. The optimal reaction temperature and reaction pH of the immobilized glucoamylase for maltose hydrolysis were identified as 40°C and 4.0, respectively. Under such conditions, the unreacted maltose in the product stream of trehalose synthase‐catalyzed reaction was completely converted to glucose within 35 min, without detectable trehalose degradation. The conversion of maltose to glucose could be maintained at 0.92 even after 80 cycles in repeated‐batch operations. It was also demonstrated that glucose thus generated could be readily oxidized into gluconic acid, which can be easily separated from trehalose. We thus believe the proposed process of maltose hydrolysis with immobilized glucoamylase, in conjunction with trehalose synthase‐catalyzed isomerization and glucose oxidase‐catalyzed oxidation, is promising for the production and purification of trehalose on industrial scales. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

2.
A study was made to determine the controlling mass transfer resistance in the overall reaction rate for conversion of maltose to glucose, catalyzed by glucoamylase immobilized onto porous glass. For normal operation of a packed column and air-stirred batch reactor, the rate controlling step was found to be the internal resistance of simultaneous pore diffusion and chemical reaction. Experimental effectiveness factors were determined and are compared with those derived from a theoretical diffusion model based on Michaelis-Menten kinetics. Also given are temperature and pH relationships for the free and immobilized glucoamylase.  相似文献   

3.
Some properties of a number of enzymes immobilized by the diazotized m-diaminobenzene (dDAB) method are described. The pH-activity profiles of beta-D-glucosidase, glucoamylase, peroxidase, uricase, and D-glucose oxidase were virtually unchanged on immobilization while those of catalase and dextranase were significantly altered. beta-D-Glucosidase, glucoamylase, and glucose oxidase were found to be more susceptible to denaturation on lyophilization when immobilized than in the native state; however, sorbitol had a marked protective effect in every case examined. Sorbitol was also found to exert a stabilizing effect when lyophilized immobilized preparations were stored. Immobilization marginally improved the stabilities of a number of enzymes to heating at 60 degrees at pH 8.0. The usefulness for continuous reaction of a column of glucoamylase attached to celite was established. The reuse of the solid supports was demonstrated.  相似文献   

4.
The effect of sugar composition on the formation of acetate esters using immobilized yeast was investigated. When the immobilized yeast was incubated in maltose medium lacking unsaturated fatty acids, the production of ethyl acetate and isoamyl acetate was poor when compared to glucose medium, although in maltose medium the production of acetyl-CoA was less than in glucose medium. Ester production was stimulated using the immobilized yeast and wort treated with glucoamylase to hydrolyze maltose. With this method, acetate esters were produced at normal levels compared to those of beer fermented in the conventional manner.  相似文献   

5.
A new kinetic approach to the study of enzyme thermal inactivation in the presence of a substrate, which influences the rate of inactivation has been developed. The method was applied to investigation of inactivation kinetics of soluble and porous silica-immobilized glucoamylase. It was found that the binding of a substrate (maltose or maltodextrines Star-Dri 24-R) increases the thermal stability of glucoamylase, the stabilizing effect being more pronounced in the case of the soluble enzyme (40-fold stabilization) as compared to the immobilized one (15-fold stabilization). The stabilizing effect does not depend on the length of the substrate (maltose, d. p. 2 or dextrines, d. p. 7). Glucose, a product of the enzymatic hydrolysis, has a much lower stabilizing effect. It was concluded that the main role in the glucoamylase thermostabilization is played by the substrate stabilization rather than by the immobilization itself (3-fold stabilization). However, a combined effect of thermostabilization of glucoamylase due to both immobilization and/or substrate stabilization is restricted by the same limit of value for immobilized and soluble enzymes, which is equal to 40--50-fold in comparison with the soluble enzyme in the absence of the substrate.  相似文献   

6.
The present work deals with maltodextrin hydrolysis by glucoamylase immobilized onto corn stover in a fluidized bed reactor. An industrial enzyme preparation was covalently grafted onto corn stover, yielding an activity of up to 372 U/g and 1700 U/g for support particle sizes of 0.8 and 0.2 mm, respectively. A detailed kinetic study, using a differential reactor, allowed the characterization of the influence of mass transfer resistance on the reaction catalyzed by immobilized glucoamylase. A simple and general mathematical model was then developed to describe the experimental conversion data and found to be valid.  相似文献   

7.
Glucoamylase was immobilized on granular polyacrylonitrile (PAN) and the optimum condition in its immobilization reaction was determined. The effect of the ratio of the imidoester and methylester to the total cyanogen on the activity of the immobilized enzyme was studied. The activity of the immobilized enzyme increased in proportion to the molar number of imidoester and decreased with that of methylester. The K(m) and V(m) values of immobilized glucoamylase which were prepared at various conditions of immobilization were determined. There were opposite trends in K(m)S between glucoamylase immobilized on imidoester-rich support and immobilized on methylester in the support, evidenced as functions of temperature. This suggests that opposite charges in the support, produced by heat deformation of PAN by hydrolysis of methylester, were an influence on the apparent K(m) of immobilized glucoamylase, besides the diffusional limitation.  相似文献   

8.
Partially purified glucoamylase from Aspergillus awamori NRRL 3112 was immobilized on diethylaminoethyl cellulose in the presence of low ionic-strength acetate buffers at pH 4.2. The active enzyme–cellulose complex was used to convert starch substrates continuously to glucose in stirred reactors. Substrate concentrations as high as 30% could be quantitatively converted to glucose at a rate of more than 25 mg/min/liter at 55°C for periods of 3 to 4 weeks in a 4-liter reactor. Shutdowns were due to mechanical problems and not to loss of enzymes, which could be recovered with no appreciable loss of specific activity. Transfer products, such as isomaltose and panose, were present in immobilized enzyme-produced syrups but to no greater degree than in soluble glucoamylase digests of starch.  相似文献   

9.
In the work, a study of cell growth and the regulation of heterologous glucoamylase synthesis under the control of the positively regulated alcA promoter in a recombinant Aspergillus nidulans is presented. We found that similar growth rates were obtained for both the host and recombinant cells when either glucose or fructose was employed as sole carbon and energy source. Use of the potent inducer cyclopentanone in concentrations greater than 3 mM resulted n maximum glucoamylase concentration and maximum overall specific glucoamylase concentration over 80 h of batch cultivation. However, cyclopentanone concentrations in excess of 3 mM also showed an inhibitory effect on spore germination as well as fungal growth. In contrast, another inducer, threonine, had no negative effect on spore germination even when concentrations of up to 100 mM were used with either glucose or fructose as carbon source. Glucoamylase synthesis in the presence of glucose plus either inducer did not begin until glucose was totally depleted, suggesting strong catabolite repression. Similar results were obtained when fructose was employed, although low levels of glucoamylase were detected before fructose depletion, suggesting partial catabolite repression. The highest enzyme concentration (570 mg/L) and overall specific enzyme concentration (81 mg/g cell) were observed in batch culture when cyclopentanone was the inducer and fructose the primary carbon source. A maximum glucoamylase concentration of 1.1 g/L and an overall specific glucoamylase concentration of 167 mg/g cell were obtained in a bioreactor using cyclopentanone as the inducer and limited-fructose feeding strategy, which nearly doubles the glucoamylase productivity from batch cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   

11.
Data reported here and previously indicate that when dextrin is hydrolyzed in the presence of immobilized glucoamylase, use of a larger average molecular weight substrate leads to lower overall rates of hydrolysis, while the maltose concentration during the bulk of the reaction and the maximum glucose concentration are lower than when the soluble form of the enzyme is employed under the same conditions. Computer simulation of the system demonstrated that all three observations were caused by pore diffusion limitation: the first by slow diffusion of substrate, the second by slow diffusion of intermediates, and the third by slow diffusion of glucose. Follow-up experiments with glucoamylase immobilized to particles of different sizes confirmed this finding, as results with the smallest beads were identical to those with soluble glucoamylase.  相似文献   

12.
Methyl and p-nitrophenyl alpha-maltooligosaccharides with a 3,6-anhydro ring on the fourth glucosyl residue, starting from the reducing end, were prepared. Enzymatic coupling catalyzed by CGTase, between 3A,6A-anhydrocyclomaltohexaose and methyl or p-nitrophenyl alpha-D-glucosides led to maltohepatosides. When miglitol, a nojirimycin analogue was used, maltooligosaccharides with miglitol at the reducing end were also obtained. After glucoamylase digestion, maltopentaosides with a 3,6-anhydro glucose as antepenultimate unit were produced in good yield. The same methyl maltopentaoside was also obtained when 3A,6A-anhydrocyclomaltoheptaose was incubated with methyl alpha-D-glucoside and CGTase, glucoamylase, glucose oxidase and catalase. These results provided new information about the specificity of the subsites of CGTase.  相似文献   

13.
Immobilized glucoamylase sheet was prepared using soluble collagen prepared from cow hide powder as the support material. The immobilized glucoamylase sheet was attached to the rotary disc and the rates of hydrolysis of maltose and soluble starch in the tank were measured. Qualitative discussions are made of the effect of stirring speed of immobilized enzyme disc on the overall reaction rate.  相似文献   

14.
A new low-cost glucoamylase preparation for liquefaction and saccharification of starchy raw materials in a one-stage system was developed and characterized. A non-purified biocatalyst with a glucoamylase activity of 3.11 U/mg, an alpha-amylase activity of 0.12 WU/mg and a protein content of 0.04 mg protein/mg was obtained from a shaken-flask culture of the strain Aspergillus niger C-IV-4. Factors influencing the enzymatic hydrolysis of starchy materials such as reaction time, temperature and enzyme and substrate concentration were standardized to maximize the yield of glucose syrup. Thus, a 90% conversion of 5% starch, a 67.5% conversion of 5% potato flour and a 55% conversion of 5% wheat flour to sweet syrups containing up to 87% glucose was reached in 3 h using 1.24 glucoamylase U/mg hydrolyzed substrate. The application of such glucoamylase preparation and a commercially immobilized glucose isomerase for the production of glucose-fructose syrup in a two-stage system resulted in high production of stable glucose/fructose blends with a fructose content of 50%. A high concentration of fructose in obtained sweet syrups was achieved when isomerization was performed both in a batch and repeated batch process.  相似文献   

15.
Immobilization of glycoenzymes through carbohydrate side chains.   总被引:1,自引:0,他引:1  
Glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y were covalently bound to water-insoluble supports through their carbohydrate side chains. Two approaches were used. First, the carbohydrate portions of the enzymes were oxidized with periodate to generate aldehyde groups. Treatment with amines (ethylenediamine or glycyltyrosine) and borohydride provided groups through which the protein could be immobilized. Ethylenediamine was attached to glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y to the extent of 24, 20, 30, and 15 mol/mol of enzyme, respectively. These derivatives were coupled to an aminocaproate adduct of CL-Sepharose via an N-hydroxysuccinimide ester or to CNBr-activated Sepharose. Coupling yields were in the range of 37–50%. Retained activities of the bound aminoalkyl-enzymes were 41% (glucoamylase), 79% (peroxidase), 71% (glucose oxidase), 83% (carboxypeptidase Y). A glycyltyrosine derivative of carboxypeptidase Y was bound to diazotized arylamine-glass. Coupling yield was 42% and retained esterase activity was 84%. In the second approach, the enzyme was adsorbed to immobilized concanavalin A and the complex was crosslinked. Adsorption of carboxypeptidase Y on immobilized concanavalin A followed by crosslinking with glutaraldehyde was also effective. The bound enzyme retained 96% of the native esterase activity and showed very good operational stability.  相似文献   

16.
The pretreatment of starch raw materials such as sweet potato, potato and cassava has been carried out using various types of crusher, viz juice mixer, homogenizer and high-speed planetary mill. The effect of pretreatment of the materials on their enzymatic hydrolysis was studied. High-speed planetary mill treatment was the most effective and comparable with heat treatment (pasting). Various crushing times were used to examine the effect of crushing by mill treatment on the enzymatic hydrolysis. In the enzymatic hydrolysis of cassava, the use of both cellulase [1,4-(1,3; 1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and glucoamylase [1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] enhanced the d-glucose yield. The immobilization of glucoamylase was studied by radiation polymerization of hydrophilic monomers at low temperature, and it was found that enzymatic activity of the immobilized glucoamylase particles varied with monomer concentration and particle size. Starchy raw materials pretreated with the mill can be efficiently hydrolysed by immobilized glucoamylase.  相似文献   

17.
Enzymes are generally sensitive to temperature changes. Porous glass particles used for glucoamylase immobilization are poor thermal conductors and a non-uniform temperature distribution can conceivably develop in a packed bed reactor of immobilized glucoamylase on porous beads. This study was made to determine experimentally the temperature and concentration profiles in an immobilized glucoamylase column. This work provides a procedure for examining possible heat effects on reactor column performance in enzyme applications.  相似文献   

18.
Glucoamylase and glucose oxidase have been immobilized on carbodiimide-treated activated carbon particles of various sizes. Loading data indicate nonuniform distribution of immobilized enzyme within the porous support particles. Catalysts with different enzyme loading and overall activities have been prepared by varying enzyme concentration in the immobilizing solution. Analysis of these results by a new method based entirely upon experimentally observable catalyst properties indicates that intrinsic catalytic activity is reduced by immobilization of both enzymes. Immobilized glucoamylase intrinsic activity decreases with increasing enzyme loading, and similar behavior is suggested by immobilized glucose oxidase data analysis. The overall activity data interpretation method should prove useful in other immobilized enzyme characterization research, especially in situations where the intraparticle distribution of immobilized enzyme is nonuniform and unknown.  相似文献   

19.
A simple method of preparing a chitin-immobilized alpha-amylase and glucoamylase from the protease- and glycosidase-less Mutant HF-15 of Aspergillus awamori var. kawachi was developed and used for the production of high-glucose syrup. The glucoamylase was tightly bound onto chitin without the aid of a crosslinking agent because the enzyme contained a specific binding site for chitin. Continuous production of high glucose concentrate from a highly concentrated alpha-amylasetreated gelatinized starch substrate (about 45% total solids) was undertaken successfully with the use of a column-packed chitin-immobilized amylase. The activity of the column was stable for more than 20 days of continuous operation and the product was found to be only glucose with an average dextrose equivalent value of more than 97%. The final product showed no isomaltose or panose contamination, indicating that the immobilized amylase had no transglucosidation activity. The immobilized amylase was most active in the conversion of gelatinized starch to glucose at 55 degrees C and pH 2.5 to 5.0. Drying the chitin-immobilized amylase resulted in the decrease of activity and shortening of storage life, whereas a storage life of up to 80 days was attained without affecting its original activity when kept under moist condition at 4 degrees C.  相似文献   

20.
Purified glucoamylase from Arachniotus citrinus was immobilized on polyacrylamide gel with 70% yield of immobilization. The immobilization improved the pH optima, temperature optima, values of K(m), V(max), and activation energy. Irreversible thermal denaturation studies of soluble and immobilized glucoamylase indicated that immobilization decreased the entropy and enthalpy of deactivation by magnitudes and made the immobilized glucoamylase thermodynamically more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号