首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ribonuclease alpha-sarcin exclusively cleaves the phosphodiester bond after G2661 in the 23S rRNA within 50S subunits, thus inactivating the ribosomes. The resulting alpha-fragment is 243 nucleotides long and contains the 3'-end of the 23S rRNA. The specificity is changed dramatically if isolated 23S rRNA is used as substrate. We have shown previously that 23S rRNA is digested completely except for two fragments, one of which is identical to the alpha-fragment. Here we show that the other fragment comprises the 5'-end of 23S rRNA and contains 385 nucleotides. A similar fragment was obtained when isolated 23S rRNA was digested with RNase A (specific for pyrimidines in single strands). It appears that the 5'-domain (equivalent to 5.8S rRNA of eukaryotic ribosomes) as well as the 3'-domain (equivalent to 4.5S rRNA of chloroplast ribosomes) have a compact and defined tertiary structure in isolated 23S rRNA in contrast to the rRNA region in between. Thus, alpha-sarcin is a convenient tool for detecting compact domains in isolated RNA.  相似文献   

2.
Synaptinemal complexes have been demonstrated in 7 microsporidian species belonging to 6 different genera (Gurleya, Thelohania, Pleistophora, Tuzetia, Baculea, Glugea). Thus, it can be presumed that a meiosis and consequently a karyogamy occur during their life cycle. Meisis occurs at the beginning of sporogony; therefore, karyogamy, must occur between spore and merogany, i.e. during the poorly known part of the life cycle. In the microsporidian species studied, with uninucleate spores and diplokaryotic merogony (Thelohania for instance), the 2 joined nuclei, each of them containing meiotic chromosomes, not only fail to fuse, but actually separate at the beginning of sporogony; afterwards, each of them undergoes meiosis. Their separation is accompanied by the appearance of an organelle whose structure and function are poorly understood. However, its structure resembles that of the kinetic center. The Nosema species studied do not have synaptinemal complexes; thus, their life cycle is difficult to understand: either karyogamy and meiosis occur during the unobserved part of the life-cycle, or sexual phanomena are absent altogether. In the latter case, the Nosema-type life cycle might be limited to vegetative multiplication which could be explained by the dimorphism theory of Microsporidia. It is shown also in the present study that the life cycle of Microsporidia does not involve haploid organisms which it might be thought to contain by comparing it with the cycles of sporozoa.  相似文献   

3.
Characteristic configurations of the nuclei and synaptonemal complexes, indicative of the onset of meiosis, were observed in the meronts of the monomorphic diplokaryotic microsporidium, Paranosema grylli. This finding indicates that a process similar to the meiosis previously reported in polymorphic and some monomorphic monokaryotic microsporidia probably occurs in the development of P. grylli. It is the first evidence for the possible presence of a sexual phase in the life cycle of this microsporidium, which for a long time has been considered asexual.  相似文献   

4.
We have isolated cytoplasmic ribosomes from Euglena gracilis and characterized the RNA components of these particles. We show here that instead of the four rRNAs (17-19 S, 25-28 S, 5.8 S and 5 S) found in typical eukaryotic ribosomes, Euglena cytoplasmic ribosomes contain 16 RNA components. Three of these Euglena rRNAs are the structural equivalents of the 17-19 S, 5.8 S and 5 S rRNAs of other eukaryotes. However, the equivalent of 25-28 S rRNA is found in Euglena as 13 separate RNA species. We demonstrate that together with 5 S and 5.8 S rRNA, these 13 RNAs are all components of the large ribosomal subunit, while a 19 S RNA is the sole RNA component of the small ribosomal subunit. Two of the 13 pieces of 25-28 S rRNA are not tightly bound to the large ribosomal subunit and are released at low (0 to 0.1 mM) magnesium ion concentrations. We present here the complete primary sequences of each of the 14 RNA components (including 5.8 S rRNA) of Euglena large subunit rRNA. Sequence comparisons and secondary structure modeling indicate that these 14 RNAs exist as a non-covalent network that together must perform the functions attributed to the covalently continuous, high molecular weight, large subunit rRNA from other systems.  相似文献   

5.
Light microscopy studies of Culicosporella lunata (Hazard & Savage), a parasite of the mosquito Culex pilosus (Dyar & Knab), revealed two sporogonial sequences. One sequence begins with diplokaryotic meronts that undergo repeated nuclear divisions to produce sporogonial plasmodia with nuclei in diplokaryotic arrangement. These plasmodia form rosette-like clusters of sporoblasts during incomplete cytokinesis and, eventually, binucleate spores. These spores initiate infections in healthy larvae when they ingest spores. The second sequence begins with diplokaryotic meronts that undergo karyogamy and meiosis to form Thelohania-like sporonts and haploid spores. Anomalies are often observed in these sporonts which result in aberrant spores, usually fewer than eight, in an accessory (pansporoblastic) membrane. Normal haploid spores are morphologically similar to those of species of Amblyospora. The genus and the type species are redefined based on new information presented here and it and the type species are placed in the family Amblyosporidae.  相似文献   

6.
Cytoplasmic p53 polypeptide is associated with ribosomes.   总被引:4,自引:1,他引:3       下载免费PDF全文
Our previous finding that the tumor suppressor p53 is covalently linked to 5.8S rRNA suggested functional association of p53 polypeptide with ribosomes. p53 polypeptide is expressed at low basal levels in the cytoplasm of normal growing cells in the G1 phase of the cell cycle. We report here that cytoplasmic wild-type p53 polypeptide from both rat embryo fibroblasts and MCF7 cells and the A135V transforming mutant p53 polypeptide were found associated with ribosomes to various extents. Treatment of cytoplasmic extracts with RNase or puromycin in the presence of high salt, both of which are known to disrupt ribosomal function, dissociated p53 polypeptide from the ribosomes. In immunoprecipitates of p53 polypeptide-associated ribosomes, 5.8S rRNA was detectable only after proteinase K treatment, indicating all of the 5.8S rRNA in p53-associated ribosomes is covalently linked to protein. While 5.8S rRNA linked to protein was found in the immunoprecipitates of either wild-type or A135V mutant p53 polypeptide associated with ribosomes, little 5.8S rRNA was found in the immunoprecipitates of the slowly sedimenting p53 polypeptide, which was not associated with ribosomes. In contrast, 5.8S rRNA was liberated from bulk ribosomes by 1% sodium dodecyl sulfate, without digestion with proteinase K, indicating that these ribosomes contain 5.8S rRNA, which is not linked to protein. Immunoprecipitation of p53 polypeptide coprecipitated a small fraction of ribosomes. p53 mRNA immunoprecipitated with cytoplasmic p53 polypeptide, while GAPDH mRNA did not. These results show that cytoplasmic p53 polypeptide is associated with a subset of ribosomes, having covalently modified 5.8S rRNA.  相似文献   

7.
1. Ribosomes from cells of the genera Trichomonas and Tritrichomonas have been isolated and characterized. The ribosomes from each organism had a sedimentation coefficient of 70S in calibrated sucrose gradients and the subunits sedimented as 50S and 30S particles under the same conditions. 2. The major ribosomal RNAs from each species were identical in size to prokaryotic ribosomal RNAs when examined by denaturing gel electrophoresis. The ribosomes contained both 5.8S and 5S RNAs. 3. The ribosomal proteins were compared by the methods of two-dimensional gel electrophoresis and reversed phase HPLC. Electrophoresis of the ribosomal proteins in two different gel systems indicated the presence of 56 proteins in T. gallinae, 40 in T. bactrachorum and 45 in the Tritrichomonas sp. The protein molecular mass range was 8.5-40 kDa. 4. The HPLC analysis confirmed the protein number established by the gel methods. 5. Both methods of analysis revealed greater similarities between the ribosomal proteins of the 2 Tritrichomonas sp. than between those of the more distantly related T. gallinae and T. bactrachorum.  相似文献   

8.
ABSTRACT. The microsporidian parasite known as Nosema helminthorum Moniez, 1887, parasitic in the tapeworm Moniezia expansa (Rudolphi, 1810), has been shown by electron microscopy to have two cycles of development, one with isolated nuclei, the other with paired nuclei (diplokarya). Both merogony and sporogony of the two separate sequences take place in direct contact with the host cell cytoplasm and ultimately give rise to unikaryotic and diplokaryotic sporoblasts. Sporogony is disporoblastic. The nuclear condition of the spores was not seen. The sequences, corresponding to those of the genera Unikaryon and Nosema, may be part of a single dimorphic life cycle and, if so, the species will have to be transferred to a new genus.  相似文献   

9.
A microsporidium of the mosquito Aedes aegypti (L.), identified as Nosema aedis Kudo, 1930, was found to be a heterosporous species with 3 sporulation sequences. Usually, 1 sequence developed in a parental generation host individual that was infected per os as a larva and the other 2 developed concurrently in a filial host larva that was infected transovarially. Under some conditions there were deviations from the parental host-filial host alternation. The 1st sporulation sequence was diplokaryotic (diploid in a particular sense) throughout; the other 2 arose from diplokaryotic meronts, developed concurrently and ended with haploid spores. Haplosis in 1 case was by means of dissociation of the diplokaryon. In the other case it was by meiosis. Conflicting reports about whether the members of the diplokaryon in the latter sequence separate and undergo meiosis individually or coalesce and undergo meiosis as 1 nucleus were resolved in favor of the latter idea. A new genus in family Amblyosporidae was created to contain this species, which then became Edhazardia aedis (Kudo, 1930) n. g., n. comb.  相似文献   

10.
A microspondium of the mosquito Aedes aegypti (L.), identified as Nosema aedis Kudo, 1930, was found to be a heterosporous species with 3 sporulation sequences. Usually, I sequence developed in a parental generation host individual that was infected per os as a larva and the other 2 developed concurrently in a filial host larva that was infected transovarially. Under some conditions there were deviations from the parental host-filial host alternation. The 1st sporulation sequence was diplokaryotic (diploid in a particular sense) throughout; the other 2 arose from diplokaryotic meronts, developed concurrently and ended with haploid spores. Haplosis in 1 case was by means of dissociation of the diplokaryon. In the other case it was by meiosis. Conflicting reports about whether the members of the diplokaryon in the latter sequence separate and undergo meiosis individually or coalesce and undergo meiosis as I nucleus were resolved in favor of the latter idea. A new genus in family Amblyosporidae was created to contain this species. which then became Edhazardia aedis (Kudo. 1930) n. g., n. comb.  相似文献   

11.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

12.
The life cycle of Amblyospora indicola, a parasite of the mosquito Culex sitiens, was revealed by field observations and laboratory infection experiments conducted in Australia. In northern Queensland, infected C. sitiens larvae were often found breeding in association with two cyclopoid copepods: Apocyclops dengizicus and an undescribed species of the same genus. The latter species was found to be an intermediate copepod host of this microsporidium whereas A. dengizicus was not. One complete cycle of the parasite extends over two mosquito generations (by transovarial transmission from females with binucleate spores to their eggs) and by horizontal transmission between mosquitoes and copepods. The latter involves horizontal transmission from mosquitoes to copepods via meiospores produced in larval fat body infections and horizontal transmission from copepods to mosquitoes via uninucleate spores produced within infected copepods. Uninucleate clavate spores were formed in Apocyclops sp. nov. copepods 7-10 days after exposure to larval meiospores and were infectious to larvae of a microsporidian-free colony of C. sitiens. The development of A. indicola within mosquito larvae exposed to infected copepods is similar to that of A. dyxenoides infecting C. annulirostris. It proceeds from stages with a single nucleus to diplokaryotic binucleate cells in oenocytes. These stages persist through pupation to adult emergence after which time a proportion of male mosquitoes and female mosquitoes may develop binucleate spores without the need for a blood meal. A proportion of both male and female larval progeny of infected females with binucleate spores develop patent fat body infections via transovarial transmission and die in the fourth larval instar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The phylogenetic approach (ref. 1) has been utilized in construction of a universal 5.8S rRNA secondary structure model, in which about 65% of the residues exist in paired structures. Conserved nucleotides primarily occupy unpaired regions. Multiple compensating base changes are demonstrated to be present in each of the five postulated helices, thereby forming a major basis for their proof. The results of chemical and enzymatic probing of 5.8S rRNAs (ref. 13, 32) are fully consistent with, and support, our model. This model differs in several ways from recently proposed 5.8S rRNA models (ref. 3, 4), which are discussed. Each of the helices in our model has been extended to the corresponding bacterial, chloroplast and mitochondrial sequences, which are demonstrated to be positionally conserved by alignment with their eukaryotic counterparts. This extension is also made for the base paired 5.8S/28S contact points, and their prokaryotic and organelle counterparts. The demonstrated identity of secondary structure in these diverse molecules strongly suggests that they perform equivalent functions in prokaryotic and eukaryotic ribosomes.  相似文献   

14.
Germ nuclei of Blepharisma japonicum begin meiosis within a few hours when cells of complementary mating types conjugate. We synchronized the onset of conjugation and treated cells in different stages of meiosis with 10 micrograms/ml cycloheximide which strongly inhibits protein synthesis in this ciliate. Cycloheximide arrested meiosis at six stages: I, between pairing of cells and swelling of germ nuclei; II, leptotene; III, zygotene; IV, pachytene; XI, interkinesis; XII, prometaphase II. Five of these arrests were reversible. Puromycin (250-500 micrograms/ml) also inhibited the progress of meiosis, though to lesser extents. We propose that the progression of meiosis of B. japonicum requires at least six proteins which are synthesized sequentially during meiosis.  相似文献   

15.
The cytoplasm of cells infected with EMC virus contains new structures which possess activity of the nuclear enzyme NAD pyrophosphorylase [14]. An attempt was made to understand the mode of formation of these structures in the infected cell. It was found that soluble NAD pyrophosphorylase manifests a strong affinity for cytoplasmic ribosomes, sedimenting at 90S. When cytoplasmic ribosomes were dissociated to the 60S and 40S subunits, the enzyme was found to be adsorbed only to the 60S unit. In extracts of rat liver nuclei, NAD pyrophosphorylase is associated with 35S particles, composed mainly of protein and DNA. The bond between enzyme and particle is of a loose nature. When ribosomes are mixed with 35S nuclear particles, most of the enzyme activity is transferred from the nuclear particles to the ribosomes, thus forming particles with an average sedimentation coefficient of 90S. Similar structures are obtained when either soluble NAD pyrophosphorylase or 35S nuclear particles are mixed with preparations of cytoplasm isolated from non-infected cells. The results of these experiments suggest that the 90S cytoplasmic structures found in virus-infected cells could result from an association between either free or particle-bound NAD pyrophosphorylase with cytoplasmic ribosomes.  相似文献   

16.
Low-molecular weight RNA (LMW RNA) analysis using staircase electrophoresis was performed for several species of eukaryotic and prokaryotic microorganisms. According to our results, the LMW RNA profiles of archaea and bacteria contain three zones: 5S RNA, class 1 tRNA and class 2 tRNA. In fungi an additional band is included in the LMW RNA profiles, which correspond to the 5.8S RNA. In archaea and bacteria we found that the 5S rRNA zone is characteristic for each genus and the tRNA profile is characteristic for each species. In eukaryotes the combined 5.8S and 5S rRNA zones are characteristic for each genus and, as in prokaryotes, tRNA profiles are characteristic for each species. Therefore, stable low molecular weight RNA, separated by staircase electrophoresis, can be considered a molecular signature for both prokaryotic and eukaryotic microorganisms. Analysis of the data obtained and construction of the corresponding dendrograms afforded relationships between genera and species; these were essentially the same as those obtained with 16S rRNA sequencing (in prokaryotes) and 18S rRNA sequencing (in eukaryotes).  相似文献   

17.
K Zahn  M Inui    H Yukawa 《Nucleic acids research》1999,27(21):4241-4250
We demonstrate the presence of a separate processed domain derived from the 5' end of 23S rRNA in ribosomes of Rhodopseudomonas palustris, a member of the alpha-++proteobacteria. Previous sequencing studies predicted intervening sequences (IVS) at homologous positions within the 23S rRNA genes of several alpha-proteobacteria, including R.palustris, and we find a processed 23S rRNA 5' domain in unfractionated RNA from several species. 5.8S rRNA from eukaryotic cytoplasmic large subunit ribosomes and the bacterial processed 23S rRNA 5' domain share homology, possess similar structures and are both derived by processing of large precursors. However, the internal transcribed spacer regions or IVSs separating them from the main large subunit rRNAs are evolutionarily unrelated. Consistent with the difference in sequence, we find that the site and mechanism of IVS processing also differs. Rhodopseudomonas palustris IVS-containing RNA precursors are cleaved in vitro by Escherichia coli RNase III or a similar activity present in R.palustris extracts at a processing site distinct from that found in eukaryotic systems and this results in only partial processing of the IVS. Surprisingly, in a reaction unlike characterized cases of eubacterial IVS processing, an RNA segment larger than the corresponding DNA insertion is removed which contains conserved sequences. These sequences, by analogy, serve to link the 23S rRNA 5' rRNA domains or 5.8S rRNAs to the main portion of other prokaryotic 23S rRNAs or to eukaryotic 28S rRNAs, respectively.  相似文献   

18.
The RNA of membrane-bound ribosomes, isolated from Dictyostelium discoideum, represented 13 to 16% of the total ribosomal RNA (rRNA) present throughout growth and development. Membrane-bound ribosomes were released by treatment with sodium deoxycholate and Brij 58. There were no obvious differences in size and base composition between RNAs derived from membrane-bound or free ribosomes. The 17S membrane-bound rRNA and free rRNAs appeared to have similar methyl contents. However, the 25S membrane-bound rRNA contained about 16 to 20% fewer methyl groups than the 17S membrane-bound rRNA and free rRNAs. Free rRNAs turned over rapidly during early development but not during the disaggregation and reaggregation processes. Membrane-bound rRNAs showed very little turnover during the early stages of morphogenesis, but showed rapid turnover during the late stages of development; this class of rRNAs did not turn over during early stages of reaggregation but turned over rapidly during later stages of reaggregation.  相似文献   

19.
Structure of the ribosome-associated 5.8 S ribosomal RNA   总被引:3,自引:0,他引:3  
The structure of the 5.8 S ribosomal RNA in rat liver ribosomes was probed by comparing dimethyl sulfate-reactive sites in whole ribosomes, 60 S subunits, the 5.8 S-28 S rRNA complex and the free 5.8 S rRNA under conditions of salt and temperature that permit protein synthesis in vitro. Differences in reactive sites between the free and both the 28 S rRNA and 60 S subunit-associated 5.8 S rRNA show that significant conformational changes occur when the molecule interacts with its cognate 28 S rRNA and as the complex is further integrated into the ribosomal structure. These results indicate that, as previously suggested by phylogenetic comparisons of the secondary structure, only the "G + C-rich" stem may remain unaltered and a universal structure is probably present only in the whole ribosome or 60 S subunit. Further comparisons with the ribosome-associated molecule indicate that while the 5.8 S rRNA may be partly localized in the ribosomal interface, four cytidylic acid residues, C56, C100, C127 and C128, remain reactive even in whole ribosomes. In contrast, the cytidylic acid residues in the 5 S rRNA are not accessible in either the 60 S subunit or the intact ribosome. The nature of the structural rearrangements and potential sites of interaction with the 28 S rRNA and ribosomal proteins are discussed.  相似文献   

20.
Role of the 5.8S rRNA in ribosome translocation.   总被引:1,自引:0,他引:1       下载免费PDF全文
Studies on the inhibition of protein synthesis by specific anti 5.8S rRNA oligonucleotides have suggested that this RNA plays an important role in eukaryotic ribosome function. Mutations in the 5. 8S rRNA can inhibit cell growth and compromise protein synthesis in vitro . Polyribosomes from cells expressing these mutant 5.8S rRNAs are elevated in size and ribosome-associated tRNA. Cell free extracts from these cells also are more sensitive to antibiotics which act on the 60S ribosomal subunit by inhibiting elongation. The extracts are especially sensitive to cycloheximide and diphtheria toxin which act specifically to inhibit translocation. Studies of ribosomal proteins show no reproducible changes in the core proteins, but reveal reduced levels of elongation factors 1 and 2 only in ribosomes which contain large amounts of mutant 5.8S rRNA. Polyribosomes from cells which are severely inhibited, but contain little mutant 5.8S rRNA, do not show the same reductions in the elongation factors, an observation which underlines the specific nature of the change. Taken together the results demonstrate a defined and critical function for the 5.8S rRNA, suggesting that this RNA plays a role in ribosome translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号