首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid-dejellied Lytechinus pictus eggs bind few sperm and show decreased fertilizability. Addition of solubilized egg jelly increases sperm binding and fertilizability, presumably by increasing the frequency of the acrosome reaction. However, dejellied Strongylocentrotus purpuratus bind more sperm and show increased fertilizability in the complete absence of soluble egg jelly. Addition of soluble egg jelly greatly decreases fertilizability in S. purpuratus. Such species differences may be the basis for the controversy between Lillie and Tyler on the one hand, who believed that egg jelly increased egg fertilizability; while Loeb and Hagström on the other hand, believed jelly had no effect on, or actually decreased egg fertilizability. 125I-labeling of dejellied S. purpuratus egg surfaces and immunofluorescent studies show that egg jelly persists on the surfaces of acid-dejellied eggs. Egg jelly appears to be a non-removable component of the vitelline layer of this species.  相似文献   

2.
Jelly coat, a multicomponent extracellular matrix surrounding the sea urchin egg, induces the acrosome reaction in sperm. The jelly coats of the four species studied, Arbacia punctulata, Strongylocentrotus purpuratus, Strongylocentrotus drobachiensis, and Lytechinus variegatus, were found to be very similar in chemical composition. A sialoprotein (approximately 20% of the mass of the jelly coat) and a fucose sulfate polysaccharide (approximately 80%) are the major macromolecular components of the jelly coat. The acrosome reaction inducing capacity resides solely in the fucose sulfate polysaccharide. Induction of the acrosome reaction ranges from highly species specific to nonspecific. Thus, A. punctulata and S. drobachiensis sperm are induced to undergo the acrosome reaction only with their homologous jelly coat, while S. purpuratus sperm react equally well with homologous or L. variegatus jelly coat, but not with A. punctulata jelly coat. L. variegatus sperm seem to be relatively nonspecific in response. Species-specific induction of the acrosome reaction resides solely in the fucose sulfate polysaccharide, suggesting that there must be structural differences in this polysaccharide in the various species. Therefore, in some species, fertilization appears to involve sperm-egg recognition at the level of the jelly coat as well as at the level of sperm-egg receptors.  相似文献   

3.
Extracts of the jelly coat of eggs of several marine invertebrates are known to induce in homologous sperm morphological changes known as the acrosome reaction. When sperm of the sea urchin Strongylocentrotus purpuratus are treated with low concentrations (0.2 μg fucose/ml) of egg jelly coat or 30 mM CaCl2 in artificial seawater the acrosome reaction does not occur. However, either of these treatments causes the exposure of an acrosin-like enzyme to exogenous substrate and inhibitors. Subsequent addition of jelly coat to 3.7 μg fucose/ml to sperm in this “initial stage” induces the acrosome reaction (as judged by the appearance of an acrosomal filament). This concentration is also effective for untreated sperm. If inhibitors of the enzyme (diisopropylphosphofluoridate or phenylmethanesulfonyl fluoride) are added to sperm in the initial stage, no acrosomal filaments are observed when the high concentration of jelly coat is added. Whether other morphological changes occur in these sperm has not been examined. If phenylmethanesulfonyl fluoride is added 4 sec after the jelly coat, the acrosomal filaments are observed, but the sperm still fail to fertilize eggs. These results suggest a dual role for the acrosin-like enzyme(s), first in the mechanism of the acrosomal filament formation and then in a subsequent event in the fertilization process.  相似文献   

4.
We have examined the relationship between sperm adhesion and fertilization in the cross species insemination of Arbacia punctulata eggs by Strongylocentrotus purpuratus sperm. As previously reported (Kinsey et al., 1980) the addition of S. purpuratus egg jelly results in induction of the acrosome reaction in sperm and significant numbers of S. purpuratus sperm adhere to A. punctulata eggs. However, in the absence of S. purpuratus egg jelly, S. purpuratus sperm fail to bind to A. punctulata eggs. Although at least 200 S. purpuratus sperm bind to an A. punctulata egg in the presence of S. purpuratus jelly, less than 8% of the eggs are fertilized. The adhesion of S. purpuratus sperm meets the same functional criteria as homologous A. punctulata sperm-egg adhesion. Electron microscopy shows that S. purpuratus sperm that have undergone the acrosome reaction adhere to A. punctulata eggs by their bindin-coated acrosomal process in a manner that is morphologically identical to that observed with homologous A. punctulata sperm. We have also compared the ability of S. purpuratus and A. punctulata sperm to fuse and fertilize with A. punctulata eggs after removal of the vitelline layer. Using high levels of sperm of either species, heterologous as well as homologous fertilization is readily detectable. Under these conditions, where stable binding is not demonstrable, there is no difference in the ability of S. purpuratus and A. punctulata sperm to fertilize A. punctulata eggs. These observations suggest that the failure of S. purpuratus sperm to fertilize A. punctulata eggs under normal conditions may be due to their inability to penetrate the vitelline layer so that they can fuse with the egg plasma membrane. In relation to the possible mechanism of vitelline layer penetration, we have also investigated the mode of action of chymostatin, an inhibitor of chymotrypsin that has been reported to inhibit fertilization of sea urchin eggs (Hoshi et al., 1979). Our findings suggest that the fertilization inhibitory activity of chymostatin is not related to its antichymotrypsin activity. Rather, it appears that this inhibition is due to the induction of an abnormal acrosome reaction in sperm that precludes formation of the acrosome process.  相似文献   

5.
When similar selection acts on the same traits in multiple species or populations, parallel evolution can result in similar phenotypic changes, yet the underlying molecular architecture of parallel phenotypic divergence can be variable. Maternal effects can influence evolution at ecological timescales and facilitate local adaptation, but their contribution to parallel adaptive divergence is unclear. In this study, we (i) tested for variation in embryonic acid tolerance in a common garden experiment and (ii) used molecular phenotyping of egg coats to investigate the molecular basis of maternally mediated parallel adaptive divergence in two amphibian species (Rana arvalis and Rana temporaria). Our results on three R. arvalis and two Rtemporaria populations show that adaptive divergence in embryonic acid tolerance is mediated via maternally derived egg coats in both species. We find extensive polymorphism in egg jelly coat glycoproteins within both species and that acid‐tolerant clutches have more negatively charged egg jelly – indicating that the glycosylation status of the jelly coat proteins is under divergent selection in acidified environments, likely due to its impact on jelly water balance. Overall, these data provide evidence for parallel mechanisms of adaptive divergence in two species. Our study highlights the importance of studying intraspecific molecular variation in egg coats and, specifically, their glycoproteins, to increase understanding of underlying forces maintaining variation in jelly coats.  相似文献   

6.
Fucose sulfate was isolated from the egg jelly glycoproteins of two kinds of sea urchins, Hemicentrotus pulcherrimus and Pseudocentrotus depressus, by mild acid hydrolysis and paper chromatography followed by charcoal and Sephadex G-25 column chromatography. The yields of fucose sulfate were 24 and 20% of the total fucan sulfate from H. pulcherrimus and P. depressus, respectively.On the basis of chemical analysis, periodate oxidation and infrared spectroscopy, the structure of the fucose sulfate of the jelly coat glycoproteins derived from two kinds of sea urchins was proposed to be L-fucose-4-sulfate.  相似文献   

7.
When immotile, flagella-less sperm were added to acid-dejellied eggs of Strongylocentrotus purpuratus 11% of the eggs fertilized. Addition of soluble egg jelly increased the percentage fertilization to 90.5. Over 50% of the sperm exposed to egg jelly had undergone the acrosome reaction compared to only 3–5% in the absence of jelly. Egg jelly was added to flagella-less sperm to induce the acrosome reaction and dejellied eggs added at various times thereafter. The fertilizing capacity of the sperm decreased with first order kinetics with 50% loss by 23 sec after induction of the acrosome reaction. Intact, motile sperm bind to formaldehyde-fixed eggs with maximum binding occurring 40 sec after sperm addition. After 40 sec the sperm begin to detach from the fixed eggs and by 240 sec none remain attached. Sperm detachment from fixed eggs and loss of fertilizing capacity after the acrosome reaction show a close temporal correlation.  相似文献   

8.
Using gametes from the sea urchins Arbacia punctulata and Strongylocentrotus purpuratus, we have evaluated the role of the acrosome reaction and the sperm-egg binding process in the block to interspecific fertilization among echinoids. The results indicate that sperm preinduced to undergo the acrosomal reaction by two different methods still bind to homologous eggs in a species specific manner. These results, taken in conjunction with an earlier study on species specificity of jelly coat induction of the acrosomal reaction (SeGall and Lennarz 1978), indicate that both the acrosome reaction and the sperm binding process contribute to the species specificity of fertilization in S. purpuratus and A. punctulata.  相似文献   

9.
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

10.
《Developmental biology》1986,115(1):27-34
Spermatozoa of the abalone Haliotis discus were treated with high-calcium seawater to induce the acrosome reaction. The soluble components released from the sperm acrosomal vesicles showed potent lytic activity on the egg vitelline coat. A vitelline coat lysin was purified by salting-in, preparative polyacrylamide gel electrophoresis, and high-performance liquid chromatography. Its molecular weight was 15,500 and its isoelectric point 9.6. These properties were similar to those of other molluskan vitelline coat lysins. The lysin was immunocytochemically localized using a protein A-gold technique, in the posterior half of the acrosomal vesicle.  相似文献   

11.
The egg jelly (EJ) coat which surrounds the unfertilized sea urchin egg undergoes extensive swelling upon contact with sea water, forming a threedimensional network of interconnected fibers extending nearly 50 μm from the egg surface. Owing to its solubility, this coat has been difficult to visualize by light and electron microscopy. However, Lytechinus pictus EJ coats remain intact, if the fixation medium is maintained at pH 9. The addition of alcian blue during the final dehydration step of sample preparation stains the EJ for visualization of resin embedded eggs by both light and electron microscopy. Stereo pairs taken of thick sections prepared for intermediate voltage electron microscopy (IVEM) produce a threedimensional image of the EJ network, consisting of interconnected fibers decorated along their length by globular jelly components. Using scanning electron microscopy (SEM), we have shown that before swelling, EJ exists in a tightly bound network of jelly fibers, 50–60 nm in diameter. In contrast, swollen EJ consists of a greatly extended network whose fibrous components measure 10 to 30 nm in diameter. High resolution stereo images of hydrated jelly produced by the quick-freeze/deep-etch/rotary-shadowing technique (QF/DE/RS) show nearly identical EJ networks, suggesting that dehydration does not markedly alter the structure of this extracellular matrix. © 1993 Wiley-Liss, Inc.  相似文献   

12.
An enzyme which hydrolyzes benzoyl arginine ethylester has been demonstrated in sperm of the sea urchin Strongylocentrotus purpuratus using a sensitive assay employing tritiated substrate. Eighty percent of the enzyme is exposed but not solubilized by treatment with either 30 mM CaCl2 or solubilized egg jelly coat. The enzymatic activity is masked in control sperm which have not been treated with these agents. The exposed enzyme is inhibited by diisopropyl phosphofluoridate (DFP), soybean trypsin inhibitor, or phenylmethane sulfonyl fluoride, suggesting that it is a serine protease and the invertebrate counterpart of vertebrate acrosin. Inhibition of the exposed enzyme with DFP prevents subsequent fertilization.  相似文献   

13.
Abalone eggs are surrounded by a complex extracellular coat that contains three distinct elements: the jelly layer, the vitelline envelope, and the egg surface coat. In this study we used light and electron microscopy to describe these three elements in the red abalone (Haliotis rufescens) and ascribe function to each based on their interactions with sperm. The jelly coat is a spongy matrix that lies at the outermost margin of the egg and consists of variably sized fibers. Sperm pass through this layer with their acrosomes intact and then go on to bind to the vitelline envelope. The vitelline envelope is a multilamellar fibrous layer that appears to trigger the acrosome reaction after sperm binding. Next, sperm release lysin from their acrosomal granules, a nonenzymatic protein that dissolves a hole in the vitelline envelope through which the sperm swims. Sperm then contact the egg surface coat, a network of uniformly sized filaments lying directly above the egg plasma membrane. This layer mediates attachment of sperm, via their acrosomal process, to the egg surface. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The surface proteins of eggs from Stronglocentrotus purpuratus were labeled with 125I by lactoperoxidase-catalyzed iodination. The eggs were examined after solubilization and disaggregation in sodium dodecyl sulphate (SDS) by electrophoresis on SDS-polyacrylamide slab-gels. Seventy-five percent of the label was found in material with a molecular weight greater than 130,000. About 5% of the radioactivity was excluded from the gels. Upon fertilization, embryos show a redistribution of the radioactively labeled species. There is a decrease in the amount of very high molecular weight material but an increase (35–40%) in material excluded from the gel. In addition, new radioactive bands of lower molecular weight are found. This change of distribution in the radioactive bands is blocked by inclusion of soybean trypsin inhibitor either before or immediately after fertilization, which completely inhibits the cortical granule protease. The disappearance of high molecular weight components is prevented by treatment of the eggs with procaine during fertilization, although the appearance of low molecular weight bands (approximately 20,000 and 30,000) is not completely blocked by procaine treatment. Parthenogenic activation of eggs by butyric acid or partial metabolic activation by ammonia each leads to changes in the egg surface proteins which are similar but not identical to those seen after fertilization. The data suggest that the labeling occurs on the vitelline membrane, plasma membrane and jelly layer. The possible significance of limited proteolysis in fertilization is discussed.  相似文献   

15.
16.
刘伟  战培荣  陈军 《动物学杂志》2013,48(2):241-248
采用扫描电镜和光学解剖镜,对黑龙江水域怀头鲇(Silirus soldatovi)成熟卵膜层次构造和受精卵胚胎发育过程中卵膜形态结构变化进行观察,并比较未脱黏和人工脱黏卵受精卵膜的表面超微结构变化.结果显示,受精卵膜的胶膜表面由一层薄而致密的物质组成,上有微孔构造.未脱黏受精卵膜表面胶膜光滑致密,多孔隙,内有小梁相连,随胚胎发育逐渐膨胀、展开、变薄,破膜期自然脱落.人工脱黏几乎全部脱去鱼卵的胶膜层,从而使卵失去黏性.脱去胶膜层的受精卵膜表面由不规则的颗粒状结构紧密嵌合而成,表面粗糙,胚胎发育过程中颗粒形状变化不大,但颗粒层逐渐变薄而且疏松,直至胚胎破膜而出:胚胎发育后期颗粒层有过早脱落和破洞出现.同时对活体鱼卵进行连续比较观察,讨论了卵膜结构及动态变化与孵化效果的关系.  相似文献   

17.
The antigenic relationship of the egg jelly coat glycoproteins from Bufo japonicus japonicus and Xenopus laevis laevis was investigated using agar double diffusion methods. The presence of ligands in the jelly coats for the cortical granule lectin from X.l. laevis eggs was also investigated. Anti-jelly serum for both anuran species crossreacted with the jelly coat from the other species with precipitin patterns of identity. Each egg jelly coat of both species contained two ligands for the cortical granule lectin. Although the ligands in the two different jelly coats appeared to react with the lectin in a pattern of identity, the species ligands were antigenically distinguishable using anti-Xenopus jelly serum. The observations that the two anuran egg jelly coats were antigenically related and that they both contained ligands for the X.l. laevis cortical granule lectin was interpreted in terms of fertilization mechanisms in the two different species. In addition, these observations bring into question the currently accepted phylogenetic relationship of B.j. japonicus and X.l. laevis.  相似文献   

18.
Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm-egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in five replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly-coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.  相似文献   

19.
The O-linked oligosaccharides of the jelly coat surroundingthe eggs of Xenopus laevis were analysed by 1H-NMR spectroscopy.Among the 12 neutral oligosaccharide-alditols which have beencharacterized, three of them posses the following unusual structures,As previously observed for six other amphibian species, thecarbohydrate chains of the jelly coat of Xenopus eggs displaya high species specificity which could support a biologicalrole during the fertilization processes. amphibian egg jelly coats 1H-NMR oligosaccharide structure Xenopus laevis  相似文献   

20.
Direct isolation of the sea urchin egg vitelline envelope with intact sperm receptors is difficult because the envelope is firmly attached to the egg plasma membrane. We now report a method for producing an inseminated egg preparation in Strongylocentrotus purpuratus (using soybean trypsin inhibitor [STI] and Ca2+, Mg2+-free seawater) that contains an elevated vitelline envelope (VE*-STI). The VE*-STI is devoid of cortical granule material, and supernumerary sperm do not detach postinsemination, suggesting that the VE*-STI contains active sperm receptors. VE*-STIs contain a 305-kD polypeptide and additional components that range from 225 to 31 kD, whereas the 305-kD polypeptide was considerably reduced in VE*s. Electrophoresis of sperm receptor hydrolase digests of VE*-STIs showed that the 305-kD polypeptide and several other envelope polypeptides are protease substrates. Univalent Fab fragments against VE*s, VE*-STIs, and 305 and 225-kD polypeptides blocked sperm binding and fertilization in an Fab concentration-dependent manner. The 305 and 225-kD polypeptides were localized in the VE*-STI using indirect immunofluorescence. Enzyme-linked immunosorbent assays showed that the 305 and 225-kD polypeptides share determinants, suggesting that the 225-kD polypeptide may be derived from the 305-kD polypeptide by the proteolysis that occurs at the cell surface during fertilization. Fab fragments against S purpuratus VE*-STI antigens neither bound to nor blocked homologous sperm binding and fertilization of Lytechinus variegatus eggs. Cross fertilizability occurred to the extent of 5% or less between L variegatus and S purpuratus, therefore, we conclude that the 305 kD-polypeptide isolated from S purpuratus is a species-specific vitelline envelope sperm receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号