首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Progression through meiosis requires two waves of maturation promoting factor (MPF) activity corresponding to meiosis I and meiosis II. Frog oocytes contain a pool of inactive "pre-MPF" consisting of cyclin-dependent kinase 1 bound to B-type cyclins, of which we now find three previously unsuspected members, cyclins B3, B4 and B5. Protein synthesis is required to activate pre-MPF, and we show here that this does not require new B-type cyclin synthesis, probably because of a large maternal stockpile of cyclins B2 and B5. This stockpile is degraded after meiosis I and consequently, the activation of MPF for meiosis II requires new cyclin synthesis, principally of cyclins B1 and B4, whose translation is strongly activated after meiosis I. If this wave of new cyclin synthesis is ablated by antisense oligonucleotides, the oocytes degenerate and fail to form a second meiotic spindle. The effects on meiotic progression are even more severe when all new protein synthesis is blocked by cycloheximide added after meiosis I, but can be rescued by injection of indestructible B-type cyclins. B-type cyclins and MPF activity are required to maintain c-mos and MAP kinase activity during meiosis II, and to establish the metaphase arrest at the end of meiotic maturation. We discuss the interdependence of c-mos and MPF, and reveal an important role for translational control of cyclin synthesis between the two meiotic divisions.  相似文献   

2.
Maturation-promoting factor, consisting of cdc2 protein kinase and a regulatory B-type cyclin, is a universal regulator of meiosis and mitosis in eukaryotes. In Xenopus, there are two subtypes of B-type cyclins, designated B1 and B2, both of which are phosphorylated. In this study, we have investigated the biological significance of this phosphorylation for Xenopus cyclin B1 during meiotic maturation. We have used a combination of site-directed mutagenesis and phosphopeptide-mapping to identify serine residues 2, 94, 96, 101, and 113 as presumptive phosphorylation sites, and together these sites account for all cyclin B1 phosphorylation in oocytes before germinal vesicle breakdown (GVBD). Single Ser-->Ala mutants as well as multiple site mutants have been constructed and characterized. Phosphorylation of cyclin B1 appears to be required for Xenopus oocyte maturation, based on the significantly diminished ability of the quintuple Ala mutant to induce oocyte maturation. Furthermore, partial phosphorylation of these five sites is sufficient to meet this requirement. Phosphorylation of cyclin B1 is not required for cdc2 kinase activity, for binding to cdc2 protein, for stability of cyclin B1 before GVBD, or for destruction of cyclin B1 after GVBD or after egg activation. A quintuple Glu mutant was also constructed, with serine residues 2, 94, 96, 101, and 113 mutated to Glu. In contrast to the quintuple Ala mutant, the quintuple Glu mutant was able to induce oocyte maturation efficiently, and with more rapid kinetics than wild-type cyclin B1. These data confirm that phosphorylation, as mimicked by Ser-->Glu mutations, confers enhanced biological activity to cyclin B1. Possible roles of cyclin B1 phosphorylation are discussed that might account for the increased biological activity of the quintuple Glu mutant.  相似文献   

3.
c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation.   总被引:2,自引:0,他引:2  
Fully-grown G2 arrested Xenopus oocytes can be induced to enter and progress into meiotic cell cycle by progesterone stimulation. This process is termed oocyte maturation. An early response to progesterone is the synthesis of the onco-protein c-Mos, defined as the candidate initiator of Xenopus oocyte maturation, which triggers the MAPK cascade, MPF activation and promotes CSF activity. Here we review our current knowledge on the synthesis, activation and functions of c-Mos in connection with MPF activation during maturation. We also discuss our recent results concerning the dispensability of cyclin B degradation in meiosis I-meiosis II transition and the stabilization of c-Mos through its direct phosphorylation by cyclin B/cdc2.  相似文献   

4.
Yeast thermotolerance does not require protein synthesis.   总被引:11,自引:5,他引:11       下载免费PDF全文
Heat shock at 37 degrees C induces synthesis of stress (heat shock) proteins in Saccharomyces cerevisiae and also induces thermotolerance. Amino acid analogs that are powerful inducers of stress protein synthesis failed to induce thermotolerance, suggesting that the stress proteins do not play a causal role in acquired thermotolerance at 37 degrees C. This suggestion was confirmed by the observation that protein synthesis was not required for the induction of thermotolerance at 37 degrees C.  相似文献   

5.
Increased intrinsic factor cobalamin binding to receptors present in ileal mucosa from mice in the late stages of pregnancy is regulated by placental lactogen. In mice at day 18-20 of pregnancy given an intraperitoneal injection of cycloheximide, 0.5 mg/kg, receptor binding was reduced from 0.42 ng/mg protein to 0.18 ng/mg protein 4 h later. Intestinal mucosal protein synthesis was less than 20% of control values after this dose of cycloheximide. Although this result could be interpreted to mean that the increase in receptors in pregnancy was due to new protein synthesis, cycloheximide-treated mice also had reduced concentrations of placental lactogen in serum. Supplementation with the hormone in cycloheximide-treated mice maintained receptor binding at pregnant levels. Analysis of binding data showed receptor number to be 3.1 X 10(11)/mg protein and the binding constant (Ka) to be 0.5 X 10(12) M-1, which were similar to values found in untreated pregnant mice. It is concluded that, because the increase in receptors cannot be explained on the grounds of new protein synthesis, placental lactogen may recruit cryptic intrinsic factor cobalamin receptors.  相似文献   

6.
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.  相似文献   

7.
U-cadherin is a member of the cadherin family in Xenopus that participates in interblastomere adhesion in the early embryo from the first cleavage onwards. Though a maternal pool of U-cadherin is available in the egg, it is not present on the egg membrane (Angres et al., 1991. Development 111, 829-844). To assess the origin of this unexpected distribution in the egg, the accumulation and localization of the cadherin during oogenesis and oocyte maturation were investigated. We report here that U-cadherin is present in Xenopus oocytes throughout oogenesis. It is localized at the oocyte-follicle cell contacts suggesting that it functions in the adhesion of the two cell types. When oocytes mature and the contacts to the follicle cells break, U-cadherin disappears from the oocyte surface. Evidence for a translocation of U-cadherin from the membrane to the inside of the oocyte was obtained when the fate of membrane-bound U-cadherin, which was labelled on the surface of oocytes prior to maturation, was followed through maturation. The total U-cadherin content of the oocyte increases during maturation. Metabolic labelling experiments indicate that at maturation the translation of U-cadherin is elevated well above the level that one would expect from the general increase in protein synthesis is presumably the main source of the maternal pool of U-cadherin in the egg.  相似文献   

8.
Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.  相似文献   

9.
Cyclins B1 and B2 are subtypes of cyclin B, a regulatory subunit of a maturation/M-phase promoting factor, and they are also highly conserved in many vertebrate species. Cyclin B1 is essential for mitosis, whereas cyclin B2 is regarded as dispensable. However, the overexpression of the cyclin B2 N-terminus containing the cytoplasmic retention signal, but not cyclin B1, inhibits bipolar spindle formation in Xenopus oocytes and embryos. Here we show that endogenous cyclin B2 was localized in and around the germinal vesicle. The perinuclear localization of cyclin B2 was perturbed by the overexpression of its N-terminus containing the cytoplasmic retention signal, which resulted in a spindle defect. This spindle defect was rescued by the overexpression of bipolar kinesin Eg5, which is located at the perinuclear region in the proximity of endogenous cyclin B2. These results demonstrate that the proper localization of cyclin B2 is essential for bipolar spindle formation in Xenopus oocytes.  相似文献   

10.
In contrast to the well-defined role of Ca2+ signals during mitosis, the contribution of Ca2+ signaling to meiosis progression is controversial, despite several decades of investigating the role of Ca2+ and its effectors in vertebrate oocyte maturation. We have previously shown that during Xenopus oocyte maturation, Ca2+ signals are dispensable for entry into meiosis and for germinal vesicle breakdown. However, normal Ca2+ homeostasis is essential for completion of meiosis I and extrusion of the first polar body. In this study, we test the contribution of several downstream effectors in mediating the Ca2+ effects during oocyte maturation. We show that calmodulin and calcium-calmodulin-dependent protein kinase II (CAMK2) are not critical downstream Ca2+ effectors during meiotic maturation. In contrast, accumulation of Aurora kinase A (AURKA) protein is disrupted in cells deprived of Ca2+ signals. Since AURKA is required for bipolar spindle formation, failure to accumulate AURKA may contribute to the defective spindle phenotype following Ca2+ deprivation. These findings argue that Ca2+ homeostasis is important in establishing the oocyte's competence to undergo maturation in preparation for fertilization and embryonic development.  相似文献   

11.
Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55-Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes.  相似文献   

12.
Processes of oocyte maturation that may be affected by boron (B) deficiency were studied to potentially determine a possible biochemical role of B in the Xenopus laevis oocyte. More specifically, the Xenopus oocyte membrane progesterone receptor (OMPR) in B-deficient oocytes was characterized by evaluating progesterone affinity for the OMPR and OMPR responsiveness to progesterone stimulation. The responsiveness of B-deficient oocytes to microinjection of a purified oocyte cytoplasmic fraction (OCF) from B-adequate oocytes was also studied to evaluate which aspects of the maturation process were affected by B deficiency. Results suggested that B deficiency resulted in incomplete oocyte maturation and that maturation could not be induced by the administration of exogenous progesterone. Progesterone successfully induced germinal vesicle breakdown (GVBD) in oocytes from females fed a B-supplemented diet (+B) and females administered a traditional diet of beef liver and lung (B adequate). Addition of exogenous B to the -B oocytes increased the rate of progesterone-induced GVBD slightly. The B-deficient X. laevis oocytes were capable of undergoing GVBD when endogenously stimulated by microinjected purified B-adequate OCF. These results indicated that the inability of the B-deficient oocytes to undergo GVBD was not associated with the cytoplasmic induction process specifically, but possibly in the progesterone receptor or signal transduction pathways. Radio-binding studies found that progesterone binding to the B-deficient OPMR was greatly reduced compared to B-adequate or B-supplemented OMPR. Moreover, washout studies determined that progesterone binding to the OMPR in B-deficient oocytes was more transient than the B adequate or +B oocytes.  相似文献   

13.
The cholesterol-depleting drug methyl-beta-cyclodextrin (Me-beta-CD) was tested for its effects on amphibian oocyte maturation, cholesterol depletion, and low-density membrane recovery. Progesterone-induced oocyte maturation was accelerated by pretreatment of cells with 5-50 mM Me-beta-CD in a dose-dependent manner. Treatment of oocytes with 50 mM Me-beta-CD alone was sufficient to induce germinal vesicle breakdown, stimulate formation of meiotic spindles, and stimulate phosphorylation of mitogen-activated protein kinase over time courses longer than those observed after progesterone treatment. After short-term (30 min) labeling of oocytes with [(3)H]cholesterol, 30-90 min of treatment with 5-50 mM Me-beta-CD removed 50%-70% of cell- associated label, and cholesterol depletion was not observed with alpha-cyclodextrin. After long-term (20-23 h) labeling of oocytes with [(3)H]cholesterol, Me-beta-CD treatment resulted in dose- dependent cholesterol depletion in the 5-50 mM range, and 50 mM Me-beta-CD removed approximately 50% of cell-associated label after 9 h. Treatment of oocytes with 5-50 mM Me-beta-CD also decreased recovery of low-density membrane by detergent-free sucrose gradient centrifugation. These results implicate cholesterol and low-density membrane domains in the signaling mechanisms leading to germinal vesicle breakdown in amphibian oocytes.  相似文献   

14.
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is a post-translational modification, which is believed antagonises phosphorylation. We have studied the O-GlcNAc level during Xenopus oocyte meiotic resumption, taking advantage of the high synchrony of this model which is dependent upon a burst of phosphorylation. Stimulation of immature stage VI oocytes using progesterone was followed by a 4.51 +/- 0.32 fold increase in the GlcNAc content, concomitantly to an increase in phosphorylation, notably on two cytoplasmic proteins of 66 and 97 kDa. The increase of O-GlcNAc for the 97 kDa protein, which we identified as beta-catenin was partly related to its accumulation during maturation, as was demonstrated by the use of the protein synthesis inhibitor--cycloheximide. Microinjection of free GlcNAc, which inhibits O-glycosylated proteins-lectins interactions, delayed the progesterone-induced maturation without affecting the O-GlcNAc content. Our results suggest that O-GlcNAc glycosylation could regulate protein-protein interactions required for the cell cycle kinetic.  相似文献   

15.
Among the proteins whose synthesis and/or degradation is necessary for a proper progression through meiotic maturation, cyclin B appears to be one of the most important. Here, we attempted to modulate the level of cyclin B1 and B2 synthesis during meiotic maturation of the mouse oocyte. We used cyclin B1 or B2 mRNAs with poly(A) tails of different sizes and cyclin B1 or B2 antisense RNAs. Oocytes microinjected with cyclin B1 mRNA showed two phenotypes: most were blocked in MI, while the others extruded the first polar body in advance when compared to controls. Moreover, these effects were correlated with the length of the poly(A) tail. Thus it seems that the rate of cyclin B1 translation controls the timing of the first meiotic M phase and the transition to anaphase I. Moreover, overexpression of cyclin B1 or B2 was able to bypass the dbcAMP-induced germinal vesicle block, but only the cyclin B1 mRNA-microinjected oocytes did not extrude their first polar body. Oocytes injected with the cyclin B1 antisense progressed through the first meiotic M phase but extruded the first polar body in advance and were unable to enter metaphase II. This suggested that inhibition of cyclin B1 synthesis only took place at the end of the first meiotic M phase, most likely because the cyclin B1 mRNA was protected. The injection of cyclin B2 antisense RNA had no effect. The life observation of the synthesis and degradation of a cyclin B1-GFP chimera during meiotic maturation of the mouse oocyte demonstrated that degradation can only occur during a given period of time once it has started. Taken together, our data demonstrate that the rates of cyclin B synthesis and degradation determine the timing of the major events taking place during meiotic maturation of the mouse oocyte.  相似文献   

16.
Cells of the myogenic rat cell line L6 can be obtained as a confluent, quiescent population of undifferentiated myoblasts after growth in F12 medium supplemented with fetal calf serum. Myogenic differentiation can be induced in these cells by changing to Dulbecco's modified Eagle's (DME) medium containing insulin as the only protein component. Labeling of the cells with [3H]thymidine demonstrates that this induction of fusion occurs in the absence of DNA synthesis in about 85% of the cells. This result was confirmed using cytosine arabinoside: fusion of quiescent L6 cells was induced in the presence of this inhibitor of DNA synthesis. The myotubes formed in DME + insulin medium, with or without cytosine arabinoside, synthesize or accumulate proteins characteristic of differentiated muscle cells including myosin heavy and light chains, alpha-actin, alpha- and beta-tropomyosins, and the acetylcholine receptor. These experiments represent a direct demonstration that DNA synthesis is not required for the induction of myogenic differentiation in undifferentiated quiescent cells.  相似文献   

17.
Many cyclins are degraded by the ubiquitination/proteasome pathways involving the anaphase-promoting complex and SCF complexes. These degradations are frequently dependent on phosphorylation by cyclin-dependent kinases (CDKs), providing a self-limiting mechanism for CDK activity. Here we present evidence from in vitro and in vivo assay systems that the degradation of human cyclin A can be inhibited by kinase-inactive mutants of CDK2 and CDC2. One obvious interpretation of these results is that like other cyclins, CDK-dependent phosphorylation of the cyclin A may be involved in cyclin A degradation. Our data indicated that CDK2 can phosphorylate cyclin A on Ser-154. Site-directed mutagenesis of Ser-154 abolished the phosphorylation by recombinant CDK2 in vitro and the majority of cyclin A phosphorylation in the cell. Activation of CDK2 and binding to SKP2 or p27(KIP1) were not affected by the phosphorylation of Ser-154. Surprising, in marked contrast to cyclin E, where phosphorylation of Thr-380 by CDK2 is required for proteolysis, degradation of cyclin A was not affected by Ser-154 phosphorylation. It is likely that the stabilization of cyclin A by the kinase-inactive CDKs was mainly due to a cell cycle effect. These data suggest an important difference between the regulation of cyclin A and cyclin E.  相似文献   

18.
Haccard O  Jessus C 《EMBO reports》2006,7(3):321-325
Xenopus oocytes are arrested in meiotic prophase I. Progesterone induces the resumption of meiotic maturation, which requires continuous protein synthesis to bring about Cdc2 activation. The identification of the newly synthesized proteins has long been a goal. Two plausible candidates have received extensive study. The synthesis of cyclin B and of c-Mos, a kinase that activates the mitogen-activated protein kinase pathway in oocytes, is clearly upregulated by translational control in response to progesterone. Recent studies suggest that ablation of either c-Mos or cyclin B synthesis by antisense oligonucleotides does not block meiotic maturation. Here, however, we show that when both pathways are simultaneously inhibited, progesterone no longer triggers maturation; adding back either c-Mos or cyclin B restores meiotic maturation. We conclude that the specific synthesis of either B-type cyclins or c-Mos, induced by progesterone, is required to induce meiotic maturation. The two pathways seem to be functionally redundant.  相似文献   

19.
Several recent studies have suggested that resumption of oocyte meiosis, indicated by germinal vesicle breakdown or GVBD, involves inhibition of endogenous heterotrimeric G proteins in both frogs and mice. These studies imply that a heterotrimeric G protein(s), and hence its upstream activator (a G protein-coupled receptor or GpCR), is activated in prophase oocytes and is responsible for maintaining meiosis arrest. To test the existence and function of this putative GpCR, we utilized a mammalian G-protein-coupled receptor kinase (GRK3) and beta-arrestin-2, which together are known to cause GpCR desensitization. Injection of mRNA for rat GRK3 caused hormone-independent GVBD. The kinase activity of GRK3 was essential for GVBD induction as its kinase-dead mutant (GRK3-K220R) was completely ineffective. Another GRK3 mutant (GRK3-DeltaC), which lacked the C-terminal G(betagamma)-binding domain and which was not associated with oocyte membranes, also failed to induce GVBD. Furthermore, injection of rat beta-arrestin-2 mRNA also induced hormone-independent GVBD. Several inhibitors of clathrin-mediated receptor endocytosis (the clathrin-binding domain of beta-arrestin-2, concanavalin A, and monodansyl cadaverine) significantly reduced the abilities of GRK3/beta-arrestin-2 to induce GVBD. These results support the central role of a yet-unidentified GpCR in maintaining prophase arrest in frog oocytes and provide a potential means for its molecular identification.  相似文献   

20.
Regulation of Src kinase activity during Xenopus oocyte maturation   总被引:2,自引:0,他引:2  
Expression of constitutively active Src protein tyrosine kinase in Xenopus oocytes has been shown to accelerate oocyte maturation suggesting that Src may be involved in meiotic progression. However, meiotic regulation of endogenous Src kinase in oocytes has not been investigated in detail. To address this problem, we measured the activity, expression level, and phosphorylation state of the endogenous Xenopus Src (xSrc) and overexpressed xSrc mutants in the process of progesterone-induced oocyte maturation. We found that the enzyme is first transiently activated in the plasma membrane-containing fraction of oocytes within 3 min of progesterone administration. This event represents one of the earliest responses of oocytes to the hormone and should be related to triggering some early signaling pathways of maturation. Thereafter, xSrc activity increases again at the time of germinal vesicle breakdown (GVBD) and remains elevated till the completion of maturation. This elevation of xSrc activity is associated with a 2-fold increase of xSrc protein content in the absence of change in its specific activity and xSrc mRNA content. No significant changes in the phosphorylation state of C-terminal regulatory phosphotyrosine can be registered either in endogenous xSrc or in overexpressed kinase-negative and wild-type xSrc proteins during maturation. Altogether, these results indicate that upregulation of xSrc in the meiotic metaphase occurs at the translation level. We also demonstrate here that the expression of constitutively active xSrc in Xenopus oocytes is accompanied by the activation of mitogen-activated protein kinase (MAPK). Our data suggest that the Src kinase acts through the MAPK pathway to accelerate oocyte maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号