首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of enzymes attached to porous solid supports is a major concern in multienzymatic bioreactors. Herein, as proof of the concept that protein localization on porous surfaces can be controlled by tuning the protein immobilization rate. We study the distribution of two poly-histidine-tagged fluorescent proteins (His-GFP and His-mCherryFP) immobilized on different 4% crosslinked agarose-type carriers by confocal laser scanning microscopy. In this context, immobilization rate is easily modulated by controlling the (i) nature of physico-chemical interaction between protein and surface (reactive groups on surface), (ii) by controlling the reactive group density and (iii) by adding competitors to the immobilization process. His-GFP is 350-fold more rapid immobilized on agarose surfaces activated with either glyoxyl groups or chelates than the same matrix activated with primary amine groups instead. A similar effect is seen with agarose matrixes activated with lower glyoxyl densities that immobilize His-GFP roughly 350-fold slower than the corresponding highly activated matrix. When His-GFP is immobilized on agarose activated with chelates groups in presence of imidazol which competes with the protein for the reactive groups on the support, the immobilization rate is again 400-fold slower than when the same protein was immobilized on the same support but with no imidazol during the immobilization process. In all cases, it was observed that rapid immobilizations (quantitative immobilization in less than 10 min) located 100% of the loaded protein at the crown of the carrier beads, meaning that only the 10% of the bead radius was colonized by the protein. On the contrary, when immobilization is much slower, a homogeneous distribution is obtained, resulting in beads whose whole radius is occupied by the protein. Therefore, we set that the more rapid immobilization, the more heterogeneous distribution. All the knowledge gained in protein distribution by immobilization rate alteration of a single protein is applied to the co-immobilization of the two fluorescent proteins in order to develop four different co-immobilization patterns with an enormous applied potential to other multi-protein systems.  相似文献   

2.
The advantages of oriented immobilization of biologically active proteins are good steric accessibilities of active binding sites and increased stability. This not only may help to increase the production of preparative procedures but is likely to promote current knowledge about how the living cells or tissues operate. Protein inactivation starts with the unfolding of the protein molecule by the contact of water with hydrophobic clusters located on the surface of protein molecules, which results in ice-like water structure. Reduction of the nonpolar surface area by the formation of a suitable biospecifc complex or by use of carbohydrate moieties thus may stabilize proteins. This review discusses oriented immobilization of antibodies by use of immobilized protein A or G. The section about oriented immobilization of proteins by use of their suitable antibodies covers immobilization of enzymes utilizing their adsorption on suitable immunosorbents prepared using monoclonal or polyclonal antibodies, preparation of bioaffinity adsorbent for the isolation of concanavalin A and immobilization of antibodies by use of antimouse immunoglobulin G, Fc-specific (i.e. specific towards the constant region of the molecule). In the further section immobilization of antibodies and enzymes through their carbohydrate moieties is described. Oriented immobilization of proteins can be also based on the use of boronate affinity gel or immobilized metal ion affinity chromatography technique. Biotin–avidin or streptavidin techniques are mostly used methods for oriented immobilization. Site-specific attachment of proteins to the surface of solid supports can be also achieved by enzyme, e.g., subtilisin, after introduction a single cysteine residue by site-directed mutagenesis.  相似文献   

3.
The influence of different factors (binding time, pH, temperature, and enzyme/carrier ratio) on the efficiency of immobilization of enzyme preparation with milk clotting activity from Bacillus mesentericus M strain by use of different carriers and methods of binding was investigated. It has been established that the dependence of immobilization from pH is most pronounced and is mainly influenced by the nature of the carrier. The binding time is of essential importance only by immobilization through adsorption. The temperature has not any influence on the efficiency of immobilization of the indicate preparation. Saturation of many of the used carriers by the different methods for immobilization was achieved at enzyme/carrier ratio 1 : 10, with exception of the cases where glutaraldehyde was used as binding reagent. In this case then the ratio was 1 : 4.  相似文献   

4.
The immobilization technique plays an important role in fabrication of a biosensor. NiO based cholesterol biosensor has been used to study the effect of various immobilization techniques on the biosensing response characteristics. The biosensors were fabricated by immobilizing cholesterol oxidase on NiO thin films by three different immobilization techniques viz. physisorption, cross-linking and covalent binding. The study reveals a strong dependence of biosensing response on corresponding immobilization technique. The biosensor based on immobilization by covalent bonding shows superior response characteristics as compared to others owing to its zero length. The results highlight the significance of immobilization technique for biosensor fabrication.  相似文献   

5.
The gating status of the QX-314 bound Na channels before and after suppressing the fast inactivation by chloramine-T (CT) was investigated by studying the gating charge immobilization using the OFF gating current (Ig,OFF). CT treatment, which abolishes the charge immobilization induced by a prolonged depolarization, altered the kinetics of Ig,OFF: the fast phase became insensitive to the pulse duration and the slow phase became three times faster than the control one. However, internally applied QX-314 (in the presence of external TTX) caused an immediate charge immobilization similar to that observed in the absence of CT treatment. The Ig,OFF exhibited kinetics similar to the inactivated channels, decaying with a very fast time course. We conclude that the charge immobilization is restored by QX-314 in the chloramine-T-treated axon and that the gating state of the QX-314-bound channel is similar to the inactivated one. The role of the gating charge immobilization in the use-dependent block mechanism is discussed.  相似文献   

6.
双醛淀粉柔性固定木瓜蛋白酶研究   总被引:13,自引:0,他引:13  
提出“柔性固定化酶”的模型,即:用一亲水、柔性高分子链接枝于载体表面制得柔性固定化载体,再用其以共价键合的方式进行酶的柔性固定化。其特点是:柔性固定可改善因直接固定化及手臂固定化使酶失活的缺陷,并提高固定化酶的自由度;如选用粒径单分散微球可改善固定化反应及固定化酶催化反应的均一性。以双醛淀粉(DAS)为柔性链对羧基化聚苯乙烯载体进行柔性化修饰后,固定木瓜蛋白酶,其活力回收率可达50%.相当于用戊二醛进行手臂固定化的活力回收率的2倍。  相似文献   

7.
Poly(gamma-glutamic acid) (gamma-PGA) is a material of polymer. Immobilization of Candida rugosa lipase (Lipase AY-30) by covalent binding on gamma-PGA led to a markedly improved performance of the enzyme. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of immobilization parameters, such as immobilization time (2-6h), immobilization temperature (0-26 degrees C), and enzyme/support ratio (0.1-0.5, w/w). Based on the analysis of ridge max, the optimum immobilization conditions were as follows: immobilization time 2.3h, immobilization temperature 13.3 degrees C, and enzyme/support ratio 0.41 (w/w); the highest lipase activity obtained was 1196 U/mg-protein.  相似文献   

8.
V-wave, F wave and H-reflex responses of soleus were used to determine neural adaptations to 2-week immobilization and whether muscle vibration intervention during immobilization would attenuate the negative adaptations induced by immobilization. Thirty subjects were divided into the ankle immobilization group and the immobilization with muscle vibration group. Mechanical vibrations with constant low amplitude (0.3 mm) were applied (12 × 4 min daily) with a constant frequency of 100 Hz on the soleus muscle of the subjects in vibration group during the ankle immobilization period. Soleus maximal M-wave (Mmax) and H-reflex (Hmax) were evoked at rest. F-wave was recorded by supramaximal stimulation delivered at rest and V-wave during maximum voluntary contraction (MVC). The EMG during MVC was represented by its root-mean-square (RMS) value. Each subject was examined before and after 2 weeks of immobilization. Results showed that following 2 weeks of immobilization, Mmax, Hmax and F wave all did not change with immobilization in either group (P > 0.05). After 2 weeks of immobilization, significant reductions in V/Mmax (of 30.78%) (P < 0.01) and EMG RMS (24.82%) (P < 0.001) were found in the immobilization group. However, no significant changes occurred in the immobilization with muscle vibration group. Such findings suggested that 2 weeks of immobilization resulted in neural impairments as evidenced by the reduction in EMG and V wave, and that such decrease was prevented by the intervention of muscle vibration during the immobilization period.  相似文献   

9.
A novel method of enzyme immobilization using a low molecular weight prepolymer of tri-functional aziridines which can immobilize enzymes both by covalent attachment and entrapment within a gel matrix is described. The enzymes are immobilized on a solid support and exhibit an excellent retention of enzymatic activity. The immobilization procedure is essentially a single step process which can be easily performed at room temperature or 4 degrees C in either aqueous solution or in an inert organic solvent. The polyaziridines used in the immobilization are nontoxic, available in bulk at low cost and completely miscible with water and many organic solvents, thus providing one of the most satisfactory methods of immobilization available.  相似文献   

10.
Effects of four and six weeks of immobilization at short length of gastrocnemius muscle on its architecture at optimum muscle length and length-force characteristics were studied. In general, immobilization effects were similar after 4 and 6 weeks. Smaller physiological cross-sectional area and lower muscle force were found as a consequence of immobilization. Muscle and aponeurosis were shorter. This was shown to be quantitatively related to atrophy i.e. smaller fibre diameter. Despite this atrophy no effects of immobilization on fibre and aponeurosis angles could be shown. Adaptation of the number of sarcomeres in series was found exclusively in distal fibres after 4 weeks of immobilization. No significant effects were found for proximal fibres of muscles at this time nor for any fibres after 6 weeks of immobilization. The effects of immobilization on muscle architecture did not affect the length range of active force exertion. It is concluded that muscle length adaptation as a consequence of short length immobilization is not related to adaptation of number of sarcomeres in series but to the occurrence of atrophy. It is also concluded that atrophy of pennate muscles does not have to be accompanied by a lower fibre and aponeurosis angle. Comparison of immobilized and control group rats indicates that the effects of immobilization can be characterized as a combination of retarded development of several variables and the influence of atrophy and its consequences.  相似文献   

11.
The in vitro uptake of 131I by the thyroid gland was investigated in rats after immobilization stress with special respect to animals lesioned in the septal area. Lesions in a septal area performed 10 days before decreased the iodide accumulation in the thyroid, while stress by immobilization increased it to the control basal value. Repeated immobilization in control rats did not produce any changes in the iodide uptake in vitro. ACTH injected in vivo stimulated the iodide 131I uptake in vitro by thyroid glands of hypophysectomized rats. It is concluded that immobilization stress in rats with septal lesions increases 131I-iodide uptake in vitro and that the increase was probably influenced by both catecholamines and glucocorticoids.  相似文献   

12.
Electrochemically controllable conjugation of proteins on surfaces   总被引:1,自引:0,他引:1  
The rational design of surfaces for immobilization of proteins is essential to a variety of biological and medical applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. We have developed an advanced electrochemically based approach for site-selective and reaction-controlled immobilization of proteins on surfaces. When a molecular monolayer of 4-nitrothiophenol on gold electrode surfaces is reduced electrochemically in a selective fashion at its nitro groups, to afford amino groups by potentiometric scans, the amine can be employed to orchestrate the immobilization of proteins to the surface. This protein immobilization strategy could allow one to fabricate intricate protein structures on surfaces for addressing fundamental and applied problems in biology and medicine.  相似文献   

13.
One-step immobilization method for peptides and proteins is developed by using modified parylene film with formyl groups which is suitable for microplate-based immunoassay and SPR biosensor application. The immobilization of peptides and proteins is achieved through the covalent bonding of the formyl group with the primary amine groups of peptides and proteins, which no additional activation step is required. In this work, the immobilization efficiency of parylene-H is estimated in comparison with parylene-A and physical adsorption, using biotinylated-cyclic citrullinated peptide (biotinylated-CCP), human chorionic gonadotropin (hCG) and horseradish peroxidase (HRP) as model proteins. The applicability of parylene-H film to SPR biosensor is demonstrated by estimating the detection range and sensitivity of SPR biosensor at various thicknesses. The immobilization efficiency of parylene-H film for SPR biosensor was compared with physical adsorption by using HRP as a model protein.  相似文献   

14.
在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。  相似文献   

15.
Endogenous corticosterone released in protracted immobilization stress fails to increase the activity of liver glycogen synthase, perhaps because of the inhibition of synthase phosphatase by phosphorylase a. It was also found, that in rats subjected to acute immobilization stress the stimulation of the activity of both synthase a and total forms by glucose administered i.v. is depressed. Finally, in rats fasting for 24 h a paradoxical augmentation by glucose of the stimulatory effect of glycogenolytic hormones released in acute immobilization stress on phosphorylase a activity was observed.  相似文献   

16.
Polysiloxane hydrogels with incorporated urease (degree of immobilization is 79-88%) that retains fermentative activity at the level of 56-84% were obtained by sol-gel technique. An influence of polysiloxane matrix functionalization on a degree of incorporation, activity retention and a factor of efficiency of urease immobilization was studied. Polysiloxane matrix functionalization with methyl groups causes decreasing a degree of ferment immobilization and a factor of immobilization efficiency. Functionalization of polysiloxane matrix with 3-aminopropyl groups leads to practically quantitative incorporation of the enzyme. And the highest degree of urease activity retention and maximal factor of its immobilization were observed at 3-aminopropyl groups content in polysiloxane matrix equals 2-5% (mol.). Transformation of hydrogels into xerogels via vacuum drying causes decreasing urease fermentative activity on nearly 2 orders.  相似文献   

17.
There is increasing evidence that hand immobilization is associated with various changes in the brain. Indeed, beta band coherence is strongly related to motor act and sensitive stimuli. In this study we investigate the electrophysiological and cortical changes that occur when subjects are submitted to hand immobilization. We hypothesized that beta coherence oscillations act as a mechanism underlying inter- and intra-hemispheric changes. As a methodology for our study fifteen healthy individuals between the ages of 20 and 30 years were subjected to a right index finger task before and after hand immobilization while their brain activity pattern was recorded using quantitative electroencephalography. This analysis revealed that hand immobilization caused changes in frontal, central and parietal areas of the brain. The main findings showed a lower beta-2 band in frontal regions and greater cortical activity in central and parietal areas. In summary, the coherence increased in the frontal, central and parietal cortex, due to hand immobilization and it adjusted the brains functioning, which had been disrupted by the procedure. Moreover, the brain adaptation upon hand immobilization of the subjects involved inter- and intra-hemispheric changes.  相似文献   

18.
Biofiltration is distinguished from other biological waste treatments by the fact that there is a separation between the microorganisms and the treated waste. In biofiltration systems the microorganisms are immobilized to the bedding material, while the treated fluid flows through it. In recent decades, a vast amount of literature has been written on single experiments involving the treatment of fluids by immobilized microorganisms. Several artificial immobilization methods have been examined and impressive results have been achieved in the treatment of fluids with one of the artificial immobilization methods the entrapment of microorganisms within polymer beads. This method, even though it needs to be improved, seems to have a future potential in commercial biofiltration systems. The methods of artificial immobilization of microorganisms within biofiltration systems have several advantages, but also suffer from several disadvantages in comparison to the treatment of fluids by naturally attached microorganisms. Understanding the mechanisms and forces responsible for the attachment of microbes to the bedding material, in attempt to improve this attachment, is of the utmost importance. Further improvement of the artificial entrapment of microorganisms within polymers will allow the exploitation of the advantages of this method in the treatment of fluids. The aim of this review essay is to introduce the main principles of two immobilization processes - the self-attachment of microorganisms to the bedding material and the artificial entrapment of microorganisms within polymer beads. Both treatments of liquids and gases with each immobilization process are discussed. The advantages and disadvantages of each immobilization process are pointed out and different aspects of the fluid treatment with the two immobilization processes are compared.  相似文献   

19.
Synthesis of a new heterobifunctional reagent, [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)-triethoxysilylpropyl-3-amine] (NTMTA) is described for the immobilization of a variety of biomolecules on glass surface. Its triethoxysilyl group reacts with glass surface and trifluoroethanesulfonate ester structure reacts selectively with aminoalkyl/mercaptoalkyl function in biomolecules. The immobilization can be achieved by two ways involving two steps. The first route involves the reaction of NTMTA with glass beads followed by attachment of aminoalkyl- or mercaptoalkylated biomolecules. The second one involves the reaction of biomolecules, viz., oligonucleotides, proteins, etc., with NTMTA via their aminoalkyl or mercaptoalkyl functions to form a biomolecule conjugate, which is then reacted with glass beads (unmodified) to complete immobilization process. This has been demonstrated by successful immobilization of 5'-mercaptoalkyl- or aminoalkylated oligonucleotides and some commonly used enzymes on glass beads using NTMTA reagent.  相似文献   

20.
Summary The mechanism involved in the positive effect of immobilization on protease production byMyxococcus xanthus was investigated. The results have shown that this phenomenon was not related to the difficulty encountered by the potential repressors to diffuse through the gel beads. The positive effect of immobilization on protease synthesis is the result of a different physiological state of the cells due to the stress caused by immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号