首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

2.
Monolayers of Caco-2 cells, a human enterocyte cell line, were incubated with [1-14C]15-hydroxyeicosatetraenoic acid (15-HETE), a lipid mediator of inflammation, and [1-14C]arachidonic acid. Both fatty acids were taken up readily and metabolized by Caco-2 cells. [1-14C]Arachidonic acid was directly esterified in cellular phospholipids and, to a lesser extent, in triglycerides. When [1-14C]15-hydroxyeicosatetraenoic acid was incubated with Caco-2 cells, about 10% was directly esterified into cellular lipids but most (55%) was beta-oxidized to ketone bodies, CO2, and acetate, with very little accumulation of shorter carbon chain products of partial beta-oxidation. The radiolabeled acetate generated from beta-oxidation of [1-14C]15-hydroxyeicosatetraenoic acid was incorporated into the synthesis of new fatty acids, primarily [14C]palmitate, which in turn was esterified into cellular phospholipids, with lesser amounts in triglycerides. Caco-2 cells were also incubated with [5,6,8,9,11,12,14,15-3H]15-hydroxyeicosatetraenoic acid; most of the radiolabel was recovered either in ketone bodies or in [3H]palmitate esterified in phospholipids and triglycerides, demonstrating that most of the [3H]15-hydroxyeicosatetraenoic acid underwent several cycles of beta-oxidation. The binding of both 15-hydroxyeicosatetraenoic acid and arachidonic acid to hepatic fatty acid binding protein, the only fatty acid binding protein in Caco-2 cells, was measured. The Kd (6.0 microM) for 15-HETE was three-fold higher than that for arachidonate (2.1 microM).  相似文献   

3.
Methanococcus voltae is a methanogenic bacterium which requires leucine, isoleucine, and acetate for growth. However, it also can synthesize these amino acids, and it is capable of low levels of autotrophic acetyl coenzyme A (acetyl-CoA) biosynthesis. When cells were grown in the presence of 14CO2, as well as in the presence of compounds required for growth, the alanine found in the cellular protein was radiolabeled. The percentages of radiolabel in the C-1, C-2, and C-3 positions of alanine were 64, 24, and 16%, respectively. The incorporation of radiolabel into the C-2 and C-3 positions of alanine demonstrated the autotrophic acetyl-CoA biosynthetic pathway in this bacterium. Additional evidence was obtained in cell extracts in which autotrophically synthesized acetyl-CoA was trapped into lactate. In these extracts, both CO and CH2O stimulated acetyl-CoA synthesis. 14CH2O was specifically incorporated into the C-3 of lactate. Cell extracts of M. voltae also contained low levels of CO dehydrogenase, 13 nmol min-1 mg of protein-1. These results further confirmed the presence of the autotrophic acetyl-CoA biosynthetic pathway in M. voltae. Likewise, 14CO2 and [U-14C]acetate were also incorporated into leucine and isoleucine during growth. During growth with [U-14C]leucine or [U-14C]isoleucine, the specific radioactivity of these amino acids in the culture medium declined, and the specific radioactivities of these amino acids recovered from the cellular protein were 32 to 40% lower than the initial specific radioactivities in the medium.Cell extracts of M. voltae also contained levels of isopropyl malate synthase, an enzyme that is specific to the leucine biosynthetic pathway, of 0.8 nmol min-1 mg of protein-1. Thus, M. voltae is capable of autotrophic CO2 fixation and leucine and isoleucine biosynthesis.  相似文献   

4.
Intraperitoneal administration of [3H]-leukotriene E4 in the rat resulted in the appearance of radiolabel in urine and feces. Separation of polar urinary metabolites and chromatographic comparison of synthetic metabolites indicated the in vivo formation of omega-oxidized metabolites of LTE4 with sequential beta-oxidation. Furthermore, the metabolite identified as 16-carboxy-17,18,19,20-tetranor-14,15-dihydro-N-acetyl-LTE4 substantiates the biochemical pathway of beta-oxidation in vivo involving the 2,4-dienoyl CoA reductase as an integral step. These results substantiate beta-oxidation of sulfidopeptide leukotrienes in vivo and these metabolites account for some of the major urinary metabolites of this class of lipid mediator.  相似文献   

5.
Assimilation of 14CO2 or 14C-acetate by the hydrocarbon producing alga Botryococcus braunii Kützing was investigated to determine the allocation of incorporated 14C among early metabolites of photosynthesis and secondary metabolites. When the cells were exposed to NaH14CO3 for 10 sec, over 90% of incorporated 14C was detected in phosphoglycerate, suggesting that this alga assimilates inorganic carbon by the C-3 pathway. The distribution pattern of 14C in the number of metabolites revealed that organic acids, neutral sugars and amino acids were first labelled with 14C, and, after lag periods of a few minutes, lipids including hydrocarbon were increasingly labelled. Addition of 5 mM acetate to the culture medium did not affect the growth of this alga but enhanced cellular respiration. The incorporation of 14CO2 into the lipid fraction was stimulated, but net photosynthesis was inhibited by the addition of acetate. 14C-acetate was incorporated into lipids at a very low rate in comparison with the rate of 14CO2 incorporation.  相似文献   

6.
The metabolism of 14C-acetate was investigated during the in vitro germination of yellow lupine seeds. Carbon atoms (14C) from the C-2 position of acetate were incorporated mainly into amino acids: aspartate, glutamate, and glutamine and into sugars: glucose, sucrose, and fructose. In contrast to this, 14C from the C-1 position of acetate was released mainly as 14CO2. Incorporation of 1-14C and 2-14C from acetate into amino acids and sugars in seedling axes was more intense when sucrose was added to the medium. However, in cotyledons where lipids are converted to carbohydrates, this process was inhibited by exogenous sucrose. Since acetate is the product of fatty acid beta-oxidation, our results indicate that, at least in lupine, seed storage lipids can be converted not only to sucrose, but mainly to amino acids. Inhibitory effects of sucrose on the incorporation of 14C from acetate into amino acids and sugars in cotyledons of lupine seedlings may be explained as the effect of regulation of the glyoxylate cycle by sugars.  相似文献   

7.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   

8.
This study was designed to examine and compare the metabolism of myristic and palmitic acids in cultured rat hepatocytes. [1-(14)C]-Labeled fatty acids were solubilized with albumin at 0.1 mmol/L in culture medium. Incubation with 24-hr cultured hepatocytes was carried out for 12 hr. Myristic acid was more rapidly (P < 0.05) taken up by the cells than was palmitic acid (86.9 +/- 0.9% and 68.3 +/- 5.7%, respectively, of the initial radioactivity was cleared from the medium after 4 hr incubation). Incorporation into cellular lipids, however, was similar after the same time (33.4 +/- 2.8% and 34.9 +/- 9.3%, respectively, of initial radioactivity). In the early phase of the incubation (30 min), myristic acid was more rapidly incorporated into cellular triglycerides than was palmitic acid (7.4 +/- 0.9% and 3.6 +/- 1.9%, respectively, of initial radioactivity). However, after 12 hr incubation, the radioactivity of cellular triglycerides, cellular phospholipids, and secreted triglycerides was significantly higher with palmitic acid as precursor. Myristic acid oxidation was significantly higher than that of palmitic acid (14.9 +/- 2.2% and 2.3 +/- 0.6%, respectively, of the initial radioactivity was incorporated into the beta-oxidation products after 4 hr). Myristic acid was also more strongly elongated to radiolabeled palmitic acid (12.2 +/- 0.8% of initial radioactivity after 12 hr) than palmitic acid was to stearic acid (5.1 +/- 1.3% of initial radioactivity after 12 hr). The combination of elongation and beta-oxidation results in the rapid disappearance of C14:0 in hepatocytes whereas C16:0 is esterified to form glycerolipids. This study provides evidence that myristic acid is more rapidly metabolized in cultured hepatocytes than is palmitic acid.  相似文献   

9.
Cultured porcine aortic endothelial cells were conditioned in normal (5.2 mM) and elevated (15.6 mM) glucose, prelabeled with [14C]arachidonic acid and stimulated with ionophore A23187. Elevated glucose cultures released less radiolabeled products and less [14C]arachidonic acid. Analysis of cellular lipids revealed that elevated glucose reduced net loss of radiolabel from diacylphosphatidylethanolamine, did not affect early phosphatidylinositol hydrolysis, and increased net loss from diacylphosphatidylcholine and alkenylacylphosphatidylethanolamine. Uptake of radiolabel upon stimulation was examined to measure the role of reacylation on the diminished net release of radiolabel in elevated glucose cultures. Enhanced acylation of [3H]arachidonic acid into cellular lipids, especially PI, was observed in stimulated and resting cultures with elevated glucose. Further, pretreatment of the cultures with an acyltransferase inhibitor, thimerosal, prior to A23187 stimulation in radiolabeled cultures, abolished the effects of glucose on eicosanoid and arachidonic acid release. Differences in the ionophore-induced net loss of radiolabel from diacylphosphatidylethanolamine and phosphatidylinositol of the two glucose treatments were diminished by thimerosal exposure, while net loss of radiolabel from diacylphosphatidylcholine and alkenylacylphosphatidylethanolamine were unaffected. The data indicate that elevated glucose alters deacylation and enhances reacylation of arachidonic acid into endothelial cells and particularly into phosphatidylinositol. Enhanced reacylation may explain some of the altered lipid pathways that have been observed in experiments that elevate glucose concentrations or involve diabetes.  相似文献   

10.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

11.
Paramecium requires oleate for growth. The phospholipids of the ciliate contain high concentrations of palmitate and 18- and 20-carbon unsaturated fatty acids. We previously showed that radiolabeled oleate is desaturated and elongated to provide these 18- and 20-carbon unsaturated acids. We now report on saturated fatty acid (SFA) metabolism in Paramecium. Radiolabeled palmitate and stearate were incorporated directly into cellular phospholipids with little or no desaturation and/or elongation. Radiolabeled acetate, malonate, pyruvate, citrate, or glucose added to cultures were not incorporated into cellular phospholipid fatty acids indicating that these exogenously supplied putative precursors were not utilized for fatty acid synthesis by Paramecium. Radiolabel from octanoate or hexanoate appeared in fatty acyl groups of phospholipids, possibly by partial beta-oxidation and reincorporation of the label. Under oleate-free conditions in which cultures do not grow, radiolabel from these shorter chain SFA were beta-oxidized and preferentially used for the formation of arachidonate, the major end-product of fatty acid synthesis in Paramecium. Cerulenin inhibited culture growth apparently by inhibiting de novo fatty acid synthesis. Cerulenin-treated cells did not incorporate radioactivity from [1-14C]octanoate into esterified palmitate. However, total saponifiable phospholipid fatty acids, including SFA, per cell increased under these conditions.  相似文献   

12.
Biosynthesis of lipids was investigated in growing 293 cells stably expressing fatty acid (FA) transport protein 1 (FATP1), a bifunctional polypeptide with FA transport as well as fatty acyl-CoA synthetase activity. In short-term (30 s) incubations, FA uptake was increased in FATP1 expressing cells (C8 cells) compared with the vector (as determined by BODIPY 3823 staining and radioactive FA uptake). In long-term (4 h) incubations, incorporation of [(14)C]acetate, [3H]oleic acid, or [(14)C]lignoceric acid into 1,2,3-triacyl-sn-glycerol (TG) was elevated in C8 cells compared with vector, whereas incorporation of radiolabel into glycerophospholipids was unaltered. The increase in TG biosynthesis correlated with an increase in 1,2-diacyl-sn-glycerol acyltransferase activity in C8 cells compared with vector. In contrast, incorporation of [(14)C]acetate into sphingomyelin (SM) and cholesterol, and [3H]oleic acid or [(14)C]lignoceric acid into SM was reduced due to a reduction in de novo biosynthesis of these lipids in C8 cells compared with vector. The results indicate that exogenously supplied FAs, and their subsequently produced acyl-CoAs, are preferentially channeled by an FATP1 linked mechanism into the TG biosynthetic pathway and that such internalized lipids down-regulate de novo SM and cholesterol metabolism in actively growing 293 cells.  相似文献   

13.
The metabolism of [1-14C]lignoceric acid (C24:0) and [1-14C]tetracosatetraenoic acid (C24:4, n-6) was studied in normal skin fibroblast cultures and in cultures from patients with defects in peroxisomal beta-oxidation (but normal peroxisomal numbers). Cells from X-linked adrenoleukodystrophy (ALD) patients with a presumed defect in a peroxisomal acyl-CoA synthetase, specific for fatty acids of carbon chain lengths greater than 22 (very-long-chain fatty acids; VLCFA), showed a relatively normal production of radiolabelled CO2 and water-soluble metabolites from [1-14C]C24:0. However, the products of synthesis from acetate de novo (released by beta-oxidation), i.e. C16 and C18 fatty acids, were decreased, and carbon chain elongation of the fatty acid was increased. In contrast, cell lines from two patients with an unidentified lesion in peroxisomal beta-oxidation (peroxisomal disease, PD) showed a marked deficiency in CO2 and water-soluble metabolite production, a decreased synthesis of C16 and C18 fatty acids and an increase in carbon chain elongation. The relatively normal beta-oxidation activity of ALD cells appears to be related to low uptake of substrate, as a defect in beta-oxidation is apparent when measurements are performed on cell suspensions under high uptake conditions. Oxidation of [1-14C]C24:4 was relatively normal in ALD cells and in the cells from one PD patient but abnormal in those from the other. Our data suggest that, despite the deficiency in VLCFA CoA synthetase, ALD cells retain a near normal ability to oxidize both saturated and polyunsaturated VLCFA under some culture conditions. However, acetate released by beta-oxidation of the saturated VLCFA and, to a much lesser degree, the polyunsaturated VLCFA, appears to be used preferentially for the production of CO2 and water-soluble products, and acetate availability for fatty acid synthesis in other subcellular compartments is markedly decreased. It is likely that the increased carbon chain elongation of the saturated VLCFA which is also observed reflects the increased availability of substrate (C24:0) and/or an increase in microsomal elongation activity in ALD cells.  相似文献   

14.
Metabolism of arabinose 5-P, ribose 5-P and glucose 6-P in permeabilized and resealed Morris hepatoma 5123TC cells was investigated by measuring the contribution of these compounds to nucleic acid biosynthesis. The level of [14C]-arabinose (non-phosphorylated) incorporation into nucleic acids was slight, presumably due to the low activity of the transport system or the absence or low activity of a specific 'kinase' enzyme. The permeabilizing procedure involved the brief treatment of Morris hepatoma 5123TC cells with lysolecithin and resulted in a cell population which was permeable to charged compounds i.e. sugar phosphates and nucleotides, that otherwise could not cross the plasma membrane. The permeabilized (and resealed cells) retained normal cellular morphology and intactness of specific organelles as judged by the maintenance of functional properties. Following permeabilization, these cells resealed when transferred back to normal growth medium, and continued to divide and increase at the same rates as control non-permeabilized cell cultures. The permeabilized cells incorporated deoxyribonucleotides ([methyl -3H]-TTP) into DNA at a linear rate of 0.047 nmol per 10(7) cells min-1, representing 90-100 per cent of the DNA synthesis rate in vivo. The permeabilization technique, when coupled with procedures to establish cell synchrony, permitted the comparative estimate of the contributions of [14C]-labelled arabinose 5-P, ribose 5-P and glucose 6-P to RNA, DNA, amino acids, CO2, lactate and sugar mono- and bisphosphates. The percentage of [14C]-isotope incorporated into total nucleic acids by these three labelled sugar phosphates were 2.3, 4.9 and 6.3 respectively. Possible reasons for the lower incorporation of 14C from arabinose 5-P are given. The results are consistent with the proposal that arabinose 5-P, an intermediate of the L-type pentose pathway activity of 5123TC cells, was incorporated into nucleic acids by its interconversion with ribulose 5-P and ribose 5-P and thus into PRPP. This study represents the first report of sugar phosphate as opposed to free sugar metabolism by tumour cells in culture.  相似文献   

15.
Metabolism of n-dioctyl ether by Acinetobacter species HO1-N resulted in formation of 8-n-octoxy-1-octanoic acid and 2-n-octoxy-1-acetic acid. The 16-carbon ether acid was incorporated into the cellular lipids, whereas the 10-carbon ether acid accumulated in the growth medium. Qualitative and quantitative characteristics of the cellular phospholipids were similar to hexadecane-grown cells. The growth of Acinetobacter on dioctyl ether occurred at the expense of six-carbon atoms of dioctyl ether.  相似文献   

16.
Metabolism of [14C]glucose by regenerating spheroplasts of Candida albicans   总被引:1,自引:0,他引:1  
Spheroplasts of Candida albicans were regenerated in [14C]glucose and buffered magnesium sulphate (0.1 M-Tris/HCl; 0.5 M-MgSO4, pH 7.2) at 35 degrees C. Uptake of glucose by spheroplasts was faster than that by intact yeast cells. After 6 h, 65% of the glucose taken up by the yeast appeared as CO2 and 30% was incorporated into the cellular material. With spheroplasts, 55% of the glucose taken up was expired as CO2, 25% was excreted into the medium as other metabolites and 20% was incorporated into the cells. The regenerating spheroplasts excreted 14C-labelled carbohydrates into the medium which were fractionated on a Sephadex G-15 column. Acid hydrolysis of the low molecular-weight fraction yielded the following sugars: mannose (75.7%), fucose (3.8%), arabinose (3%), galactose (2.1%) and an unidentified monosaccharide (14%). Spheroplasts did not incorporate mannoprotein into the regenerated wall. The wall carbohydrate from regenerated spheroplasts was fractionated on the basis of solubility in sodium hydroxide. The alkali-insoluble fraction was analysed by sequential enzyme hydrolysis; 40% of the incorporated counts were associated with beta (1----3)-linked glucan and 50% with a mixed glucan comprising beta (1----3)- and beta (1----6)-linkages and chitin.  相似文献   

17.
The fission yeast Schizosaccharomyces pombe utilizes acetate at subinhibitory concentrations in the presence of D-glucose. The nonionized form of acetate is preferentially utilized, oxidized to 14CO2, and assimilated into lipids and proteins. Acetyl CoA synthetase activity greatly increases in the yeast cells grown in media containing acetate. However, glyoxylate cycle enzymes are not detectable in Schizosaccharomyces pombe. [1-14C]Acetate is incorporated into stereols, sterol esters, neutral lipids, and phospholipids. Assimilation of [1-14C]acetate into the peptide structure of proteins was confirmed by a proteolytic digestion experiment.  相似文献   

18.
Epoxyeicosatrienoic acids (EETs), the eicosanoid biomediators synthesized from arachidonic acid by cytochrome P450 epoxygenases, are inactivated in many tissues by conversion to dihydroxyeicosatrienoic acids (DHETs). However, we find that human skin fibroblasts convert EETs mostly to chain-shortened epoxy-fatty acids and produce only small amounts of DHETs. Comparative studies with [5,6,8,9,11,12,14,15-(3)H]11,12-EET ([(3)H]11,12-EET) and [1-(14)C]11,12-EET demonstrated that chain-shortened metabolites are formed by removal of carbons from the carboxyl end of the EET. These metabolites accumulated primarily in the medium, but small amounts also were incorporated into the cell lipids. The most abundant 11, 12-EET product was 7,8-epoxyhexadecadienoic acid (7,8-epoxy-16:2), and two of the others that were identified are 9, 10-epoxyoctadecadienoic acid (9,10-epoxy-18:2) and 5, 6-epoxytetradecaenoic acid (5,6-epoxy-14:1). The main epoxy-fatty acid produced from 14,15-EET was 10,11-epoxyhexadecadienoic acid (10, 11-epoxy-16:2). [(3)H]8,9-EET was converted to a single metabolite with the chromatographic properties of a 16-carbon epoxy-fatty acid, but we were not able to identify this compound. Large amounts of the chain-shortened 11,12-EET metabolites were produced by long-chain acyl CoA dehydrogenase-deficient fibroblasts but not by Zellweger syndrome and acyl CoA oxidase-deficient fibroblasts. We conclude that the chain-shortened epoxy-fatty acids are produced primarily by peroxisomal beta-oxidation. This may serve as an alternate mechanism for EET inactivation and removal from the tissues. However, it is possible that the epoxy-fatty acid products may have metabolic or functional effects and that the purpose of the beta-oxidation pathway is to generate these products.  相似文献   

19.
13(S)-Hydroxy-[12,13-3H]octadecadienoic acid (13-HODE), a linoleic acid oxidation product that has vasoactive properties, was rapidly taken up by bovine aortic endothelial cells. Most of the 13-HODE was incorporated into phosphatidylcholine, and 80% was present in the sn -2 position. The amount of 13-HODE retained in the cells gradually decreased, and radiolabeled metabolites with shorter reverse-phase high-performance liquid chromatography retention times (RT) than 13-HODE accumulated in the extracellular fluid. The three major metabolites were identified by gas chromatography combined with mass spectrometry as 11-hydroxyhexadecadienoic acid (11-OH-16:2), 9-hydroxytetradecadienoic acid (9-OH-14:2), and 7-hydroxydodecadienoic acid (7-OH-12:2). Most of the radioactivity contained in the cell lipids remained as 13-HODE. However, some 11-OH-16:2 and several unidentified products with longer RT than 13-HODE were detected in the cell lipids. Normal human skin fibroblasts also converted 13-HODE to the three major chain-shortened metabolites, but Zellweger syndrome fibroblasts produced only a very small amount of 11-OH-16:2. Therefore, the chain-shortened products probably are formed primarily by peroxisomal beta-oxidation. These findings suggest that peroxisomal beta-oxidation may constitute a mechanism for the inactivation and removal of 13-HODE from the vascular wall. Because this is a gradual process, some 13-HODE that is initially incorporated remains in endothelial phospholipids, especially phosphatidylcholine. This may be the cause of some of the functional perturbations produced by 13-HODE in the vascular wall.  相似文献   

20.
Long chain acyl-CoA synthetase (ACSL) catalyzes the initial step in long chain fatty acid metabolism. Of the five mammalian ACSL isoforms cloned and characterized, ACSL5 is the only isoform found to be located, in part, on mitochondria and thus was hypothesized to be involved in fatty acid oxidation. To elucidate the specific roles of ACSL5 in fatty acid metabolism, we used adenoviral-mediated overexpression of ACSL5 (Ad-ACSL5) in rat hepatoma McArdle-RH7777 cells. Confocal microscopy revealed that Ad-ACSL5 colocalized to both mitochondria and endoplasmic reticulum. When compared with cells infected with Ad-GFP, Ad-ACSL5-infected cells at 24 h after infection had 2-fold higher acyl-CoA synthetase activities and 30% higher rates of fatty acid uptake when incubated with 500 microM [1-(14)C]oleic acid. Metabolism of [1-(14)C]oleic acid to cellular triacylglycerol (TAG) increased 42% in Ad-ACSL5-infected cells, but when compared with control cells, metabolism to acid-soluble metabolites, phospholipids, and medium TAG did not differ substantially. The incorporation of [1-(14)C]oleate and [1,2,3-(3)H]glycerol into TAG was similar in Ad-ACSL5-infected cells, thus indicating that Ad-ACSL5 increased TAG synthesis through both de novo and reacylation pathways. However, [1-(14)C]acetic acid incorporation into cellular lipids showed that, when compared with control cells, Ad-ACSL5-infected cells did not increase the metabolism of fatty acids that were derived from de novo synthesis. These results suggest that uptake of fatty acids into cells is regulated by metabolism and that overexpressed ACSL5 partitions exogenously derived fatty acids toward TAG synthesis and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号