首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fu H  Han B  Zhao YF  Tu GZ  Xu L  Lu Q  Wang JZ  Xiao HZ 《Bioorganic chemistry》2003,31(2):122-128
Amino acid-nucleotide conjugates have important biological functions and therapeutic applications. For example, aminoacyl adenylates are key intermediates in aminoacyl tRNA synthetase reactions. They may also be involved in the prebiotic synthesis of polypeptides. Finally, various amino acid carbomethoxy aryl phosphoramidates of nucleotide prodrugs may be activated through a mechanism involving a pentacoordinated phosphorane intermediates. In order to understand better the chemistry of these compounds, a phenylalanyl adenylate pentacoodinated phosphorane has been synthesized in 72% yield and its decomposition in aqueous solution studied. Hydrolysis gave 2('),3(')-O-isopropylidene adenosine 5(')-monophosphate, 2('),3(')-O-isopropylidene adenosine, and phenylalanine. The results provide model chemistry for the enzymatic degradation mechanism of antiviral aryl amino acid phosphodiester amidates in cells, which leads to their activation.  相似文献   

2.
The detailed synthesis of (bis)aminoacyl-pdCpAs and the corresponding singly and tandemly activated tRNAs is reported. The synthetic pathway leading to these compounds has been validated for simple amino acid residues as well as for amino acids bearing more complex side chains. Protection/deprotection strategies are described. For the bisaminoacylated tRNAs, both the synthesis of tRNAs bearing the same amino acid residue at the 2' and 3' positions and tRNAs bearing two different aminoacyl moieties are reported. Further, it is shown that the tandemly activated tRNAs are able to participate in protein synthesis.  相似文献   

3.
Guth E  Connolly SH  Bovee M  Francklyn CS 《Biochemistry》2005,44(10):3785-3794
Aminoacyl-tRNA synthetases (aaRS) join amino acids to their cognate transfer RNAs, establishing an essential coding relationship in translation. To investigate the mechanism of aminoacyl transfer in class II Escherichia coli histidyl-tRNA synthetase (HisRS), we devised a rapid quench assay. Under single turnover conditions with limiting tRNA, aminoacyl transfer proceeds at 18.8 s(-)(1), whereas in the steady state, the overall rate of aminoacylation is limited by amino acid activation to a rate of 3 s(-)(1). In vivo, this mechanism may serve to allow the size of amino acid pools and energy charge to control the rate of aminoacylation and thus protein synthesis. Aminoacyl transfer experiments using HisRS active site mutants and phosphorothioate-substituted adenylate showed that substitution of the nonbridging Sp oxygen of the adenylate decreased the transfer rate at least 10 000-fold, providing direct experimental evidence for the role of this group as a general base for the reaction. Other kinetic experiments revealed that the rate of aminoacyl transfer is independent of the interaction between the carboxyamide group of Gln127 and the alpha-carboxylate carbon, arguing against the formation of a tetrahedral intermediate during the aminoacyl transfer. These experiments support a substrate-assisted concerted mechanism for HisRS, a feature that may generalize to other aaRS, as well as the peptidyl transferase center.  相似文献   

4.
Glutaminyl-tRNA synthetase generates Gln-tRNA(Gln) 10(7)-fold more efficiently than Glu-tRNA(Gln) and requires tRNA to synthesize the activated aminoacyl adenylate in the first step of the reaction. To examine the role of tRNA in amino acid activation more closely, several assays employing a tRNA analog in which the 2'-OH group at the 3'-terminal A76 nucleotide is replaced with hydrogen (tRNA(2'HGln)) were developed. These experiments revealed a 10(4)-fold reduction in kcat/Km in the presence of the analog, suggesting a direct catalytic role for tRNA in the activation reaction. The catalytic importance of the A76 2'-OH group in aminoacylation mirrors a similar role for this moiety that has recently been demonstrated during peptidyl transfer on the ribosome. Unexpectedly, tracking of Gln-AMP formation utilizing an alpha-32P-labeled ATP substrate in the presence of tRNA(2'HGln) showed that AMP accumulates 5-fold more rapidly than Gln-AMP. A cold-trapping experiment revealed that the nonenzymatic rate of Gln-AMP hydrolysis is too slow to account for the rapid AMP formation; hence, the hydrolysis of Gln-AMP to form glutamine and AMP must be directly catalyzed by the GlnRS x tRNA(2'HGln) complex. This hydrolysis of glutaminyl adenylate represents a novel reaction that is directly analogous to the pre-transfer editing hydrolysis of noncognate aminoacyl adenylates by editing synthetases such as isoleucyl-tRNA synthetase. Because glutaminyl-tRNA synthetase does not possess a spatially separate editing domain, these data demonstrate that a pre-transfer editing-like reaction can occur within the synthetic site of a class I tRNA synthetase.  相似文献   

5.
Modified Tyr-tRNATyr and Phe-tRNAPhe species from yeast having the aminoacyl residue bound specifically to the 2' and 3' position of the terminal adenosine, respectively, were investigated for their ability to form ternary complexes with Escherichia coli elongation factor Tu and GTP. Both Tyr-tRNATyr-CpCpA (2'd) and Tyr-tRNATyr-CpCpA(3' d) derivatives which are esterified with the amino acid on the 3' and 2' position respectively and which lack the vicinal hydroxyl were able to form ternary complexes. The stability of these ternary complexes was lower than in the case of native Tyr-tRNATyr-CpCpA. Tyr-tRNATyr-CpCpA(3' d) having the amino acid attached to the 2' position interacted considerably more strongly with EF-Tu - GTP than Tyr-tRNATyr-CpCpA(2' d). Ternary complex formation was observed with neither Phe-tRNAPhe-CpCpA(2'NH2) nor Phe-tRNAPhe-CpCpA(3'NH2). It is concluded that 2' as well as 3' isomers of native aminoacyl-tRNA can be utilized for ternary complex formation but in a following step a uniform 2'-aminoacyl-tRNA - EF-Tu - GTP complex is formed. Although the free vicinal hydroxyl group of the terminal adenosine is not absolutely required, replacement of the ester linkage through with the amino acid is attached to tRNA by an amide linkage leads to loss of ability to interact with elongation factor Tu.  相似文献   

6.
Dipeptide synthesis by aminopeptidase from Streptomyces septatus TH-2 (SSAP) was demonstrated using free amino acid as an acyl donor and aminoacyl methyl ester as an acyl acceptor in 98% methanol (MeOH). SSAP retained its activity after more than 100 h in 98% MeOH, and in the case of phenylalanyl-phenylalanine methyl ester synthesis, the enzyme reaction reached equilibrium when more than 50% of the free phenylalanine was converted to the product. In an investigation of the specificity of SSAP toward acyl donors and acyl acceptors, SSAP showed a broad specificity toward various free amino acids and aminoacyl methyl esters. Furthermore, we applied SSAP to the synthesis of several biologically active peptides, such as aspartyl-phenylalanine, alanyl-tyrosine, and valyl-tyrosine methyl esters.  相似文献   

7.
Dipeptide synthesis by aminopeptidase from Streptomyces septatus TH-2 (SSAP) was demonstrated using free amino acid as an acyl donor and aminoacyl methyl ester as an acyl acceptor in 98% methanol (MeOH). SSAP retained its activity after more than 100 h in 98% MeOH, and in the case of phenylalanyl-phenylalanine methyl ester synthesis, the enzyme reaction reached equilibrium when more than 50% of the free phenylalanine was converted to the product. In an investigation of the specificity of SSAP toward acyl donors and acyl acceptors, SSAP showed a broad specificity toward various free amino acids and aminoacyl methyl esters. Furthermore, we applied SSAP to the synthesis of several biologically active peptides, such as aspartyl-phenylalanine, alanyl-tyrosine, and valyl-tyrosine methyl esters.  相似文献   

8.
Chemical synthesis of mixed diesters of ethanediol with N-acyl amino acids and fatty acids is described. The synthesis is performed in three steps: (1) preparation of N-acyl amino acids using fatty acid ester of N-hydroxyphthalimide as an acylating agent; (2) partial esterification of ethanediol with N-acyl amino acid, in tetrahydrofuran in presence of thionyl chloride; (3) further esterification of the monoester of ethanediol with a fatty acid, to a mixed diester, in presence of the same reagent.  相似文献   

9.
A puromycin analogue possessing a hydrophilic amino acid, 3′-N-[S-(6-hydroxyhexyl)-L-cysteinyl]puromycin aminonucleoside, has been prepared and examined as a substrate for ribosomal peptidyl transferase. Kinetic studies indicate that this non-aromatic aminoacyl analogue is 95.6% as efficient as the parent antibiotic in the transpeptidation reaction. In addition, the analogue is an effective inhibitor of poly (U) and poly (U,C) directed protein synthesis in an Escherichia coli cell free system.  相似文献   

10.
Escherichia coli ribosomal protein L2 interacts with fMet-tRNAMet and NacPhe-tRNAPhe in solution, protecting their 3'-ends from enzymatic degradation. At the same time L2 enhances the rate of spontaneous hydrolysis of the ester bonds between terminal riboses and amino acyl moieties of these two peptidyl-tRNA analogues. L2 has, however, only a slight effect on the rate of spontaneous deacylation of aminoacyltRNAs. We suggest that the role of L2 is in the fixation of the aminoacyl stem of tRNA to the ribosome at its P-site, and speculate that this protein is directly involved in the peptidyl transferase (PT) reaction. Peptidyl transferase Protein L2 tRNA-protein complex  相似文献   

11.
Studies of the properties of aminoacyl derivatives of 5′-AMP are aimed at understanding the origin of the process of protein synthesis. Aminoacyl (2′,3′) esters of 5′-AMP can serve as models of the 3′-terminus of aminoacyl tRNA. We report here on the relative rates of hydrolysis of AC -D - and L -Phe AMP esters as a function of pH. At all pHs above 3, the rate constant of hydrolysis of the AC -L -Phe ester is 1.7 to 2.1 times that of AC -D -Phe ester. The D -isomer seems partially protected from hydrolysis by a stronger association with the adenine ring of the 5′-AMP. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Transfer RNA molecules translate the genetic code by recognizing cognate mRNA codons during protein synthesis. The anticodon wobble at position 34 and the nucleotide immediately 3' to the anticodon triplet at position 37 display a large diversity of modified nucleosides in the tRNAs of all organisms. We show that tRNA species translating 2-fold degenerate codons require a modified U(34) to enable recognition of their cognate codons ending in A or G but restrict reading of noncognate or near-cognate codons ending in U and C that specify a different amino acid. In particular, the nucleoside modifications 2-thiouridine at position 34 (s(2)U(34)), 5-methylaminomethyluridine at position 34 (mnm(5)U(34)), and 6-threonylcarbamoyladenosine at position 37 (t(6)A(37)) were essential for Watson-Crick (AAA) and wobble (AAG) cognate codon recognition by tRNA(UUU)(Lys) at the ribosomal aminoacyl and peptidyl sites but did not enable the recognition of the asparagine codons (AAU and AAC). We conclude that modified nucleosides evolved to modulate an anticodon domain structure necessary for many tRNA species to accurately translate the genetic code.  相似文献   

13.
M Taiji  S Yokoyama  T Miyazawa 《Biochemistry》1983,22(13):3220-3225
The rates of migration of the aminoacyl group (transacylation) between 2'-O-(aminoacyl)-tRNA and 3'-O-(aminoacyl)-tRNA were studied by the nuclear magnetic resonance (NMR) analyses of 3'-terminal fragment models, with regard to the significance of transacylation in the process of protein biosynthesis. 2'(3')-O-L-Alanyladenosine, -valyladenosine, -isoleucyladenosine, -phenylalanyladenosine, and -methionyladenosine, and 2'(3')-O-L-phenylalanyladenosine 5'-phosphate and methionyladenosine 5'-phosphate were chemically synthesized, and the rates of transacylation in deuterated buffer were directly measured by the NMR saturation transfer method. The dependences of transacylation rates on p2H and temperature were analyzed. The results indicate that the transacylation rates are significantly affected by the ionization states of the alpha-amino group of the amino acid moiety but not by the presence of the 5'-phosphate group of the adenylate moiety. The second-order rate constants for the base-catalyzed transacylation reactions were also determined for the ionized form (with alpha-N2H3+ group) of (aminoacyl)adenosines. The transacylation rates of (aminoacyl)adenosines in 1H2O solution at p1H 7.3 and 37 degrees C (intracellular environment) were evaluated as 3-11 s-1 for the 2' leads to 3' transacylation and 1-4 s-1 for the 3' leads to 2' transacylation, indicating that the transacylation rate of free aminoacyl-tRNA is slower than the overall rate of polypeptide chain elongation per ribosome. This suggests the presence of some enzymatic factor for enhancing the transacylation rates of aminoacyl-tRNAs in the polypeptide chain elongation process in vivo.  相似文献   

14.
Simultaneous peptide and oligonucleotide formation was observed in reaction mixtures of amino acid, nucleoside triphosphate, imidazole, and MgCl2. At 70 degrees C in solutions that were evaporated to dryness the formation of peptide for phe and pro was greatest with CTP relative to ATP, GTP, and UTP. Lysine exhibited a preference for GTP and glycine for UTP. At ambient temperature insolution at pH 7.8, CTP was preferred by glycine, but at pH 8.7 UTP was preferred. The glycine nucleotide phosphoramidates were also detected and characterized in reactions at 40 degrees C. The glycine-reaction preference for CTP at pH 7.8 and UTP at 8.7 suggested that the basicity of the nucleoside triphosphate was involved in increasing the peptide yield. CTP near neutrality is the most basic nucleoside triphosphate and the basic anionic form UTP could facilitate peptide formation at pH 8.7. These data, together with information on the complexing of poly(C) by GTP, led to the experimentally approchable hypothesis that GTP, by forming a basic triplex between the cytosine residues adjacent to the peptidyl adenosine and aminoacyl adenosine at the termini of two proto-tRNAs, would promote peptide bond synthesis between the aminoacyl residue and peptidyl residue.  相似文献   

15.
The effect of hypobaric hypoxia on the activities of glutamine synthetase, glutaminase and cyclic 3'5' AMP phosphodiesterase in rat brain was studied after exposure to 25,000' for 6 h. Glutamine synthetase activity was increased in all the regions of brain studied, and addition of gamma amino butyric acid, serotonin and cortisol in vitro produced a differential response. Glutaminase activity decreased in the whole brain. Cyclic 3'5' AMP phosphodiesterase activity decreased in cerebellum, medulla, hypothalamus and pituitary showing an accumulation of cyclic 3'5' AMP in these regions. The results suggest that glutamine synthesis and degradation are regulated in the central nervous system by cyclic AMP and cortisol: Gamma aminoburyric acid and other compounds can modulate the activity of glutamine synthetase and glutaminase.  相似文献   

16.
17.
J Jonák  K Karas 《FEBS letters》1989,251(1-2):121-124
Modification of B. subtilis EF-Tu by N-tosyl-L-phenylalanyl chloromethane destroyed its ability to promote protein synthesis and resulted in selective dissociation of the two binding activities of the protein for aminoacyl-tRNA. The modified EF-Tu was completely ineffective in the protection of the 3'-terminal CCA structure of tRNA against pancreatic ribonuclease, while remaining almost fully active in the protection of the ester bond between the 3'-terminal adenosine and the amino acid residue in aminoacyl-tRNA.  相似文献   

18.
A stereoselective synthetic route has been developed for the combinatorial synthesis of a structurally unique class of C-4' side chain modified peptide-linked nucleosides. The synthetic strategy and approach involves initial synthesis of a strategically functionalized amino butenolide template, utilizing L-serine as a chiral starting material. Subsequent transformation of the above lactone to C4' aminoalkyl substituted nucleosides, followed by the peptidic coupling of the C4' side chain amine with various amino acids completed the syntheses of the target peptidyl nucleosides. Employing the above route, and utilizing a combination of easily available nucleobases (4) and amino acids (6) as the two diversity elements, synthesis of a 24-member combinatorial library of the title peptide-linked nucleosides has been accomplished.  相似文献   

19.
Reasons for believing that primitive mechanisms of translation may have employed thiol esters of the amino acids rather than oxygen esters are summarized. It is suggested that coenzyme A (HSCoA), which fulfills the role of aminoacyl transfer in the synthesis of peptide antibiotics, is a primitive analogue of tRNA which performs a similar role in protein synthesis. HSCoA—an adenylic acid moiety containing phosphates esterified at the 3′ and 5′ positions and linked to a peptide-like structure terminating in a reactive thiol—possesses chemical features suggestive of both peptides and polynucleotides. Examination of the chemistry of HSCoA-like molecules shows that a rather similar compound can carry out a repeating intramolecular peptide synthesis in the absence of enzymes. Condensation of further nucleotides onto the adenylic acid moiety gives rise to parallel modes of peptide and oligonucleotide synthesis. A “self-improving” ability to select available amino acids is inherent in the proposed mechanism of peptide synthesis. The hypothesis plausibly explains the universal occurrence of a sulphur-containing amino acid at the N terminus of nascent proteins.  相似文献   

20.
The effect of cyclic 3',5'-AMP and supplemental dietary glycine upon de novo synthesis of serine metabolic enzymes in chick livers were examined. Chicks fed crystalline amino acid diets containing 2% glycine had approximately twofold the activity in liver for 3-phosphoglycerate dehydrogenase and phosphoserine phosphatase compared to liver tissue from chicks fed diets lacking in dietary glycine. Chicks subjected to daily intraperitoneal injections of cyclic 3',5'-AMP and fed diets containing no dietary glycine contained biosynthetic enzyme activity similar to glycine-fed chicks suggesting a correlation between glycine and cyclic AMP for serine enzyme induction. The elevated enzyme activity in liver of chicks fed dietary glycine or injected with cyclic AMP was inhibited when chicks were also injected with actinomycin D indicating de novo synthesis of 3-phosphoglycerate dehydrogenase and phosphoserine phosphatase. Dietary glycine or cyclic AMP, however, did not change serine dehydratase and glycerate dehydrogenase activities in chick liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号