首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)是治疗Ⅱ型糖尿病的靶点之一,筛选PTP1B抑制剂具有十分重要的意义.本文采用分子对接虚拟筛选方法,构建共含有42 296个小分子的天然产物库,分别与PTP1B靶点蛋白进行分子对接,以原配体的结合能量为阈值,经过三轮筛选选取打分值高于阈值的小分子进行药代动力学参数和毒性参数预测,最终筛选出3个PTP1B抑制剂,对苯醌类化合物7、异香豆素类衍生物10和Clavepictine类似物11.结合方式研究表明,3个候选抑制剂类药性良好,均具有较好的PTP1B抑制活性,其中化合物10和11的PTP1B抑制活性未见报道.对化合物10进行体外抑制活性检测,其IC50为(74.58±1.23)μmol/L,可作为潜在Ⅱ型糖尿病治疗药物.  相似文献   

2.
蛋白酪氨酸磷酸酶1B(protein tyrosine phosphatase 1B,PTP1B)是治疗Ⅱ型糖尿病的靶点之一,筛选PTP1B抑制剂具有十分重要的意义.本文采用分子对接虚拟筛选方法,构建共含有42 296个小分子的天然产物库,分别与PTP1B靶点蛋白进行分子对接,以原配体的结合能量为阈值,经过三轮筛选选取打分值高于阈值的小分子进行药代动力学参数和毒性参数预测,最终筛选出3个PTP1B抑制剂,对苯醌类化合物7、异香豆素类衍生物10和Clavepictine类似物11.结合方式研究表明,3个候选抑制剂类药性良好,均具有较好的PTP1B抑制活性,其中化合物10和11的PTP1B抑制活性未见报道.对化合物10进行体外抑制活性检测,其IC50为(74.58±1.23)μmol/L,可作为潜在Ⅱ型糖尿病治疗药物.  相似文献   

3.
以白树(Suregada glomerulata)中分离得到的五个氮杂糖成分为底物,在其N上衍生合成,分析N上衍生基团对α-葡萄糖苷酶抑制活性的影响。分别合成了N-甲基化、N,N-二甲基化、N-丁基化和N-氧化衍生物,体外测试化合物的α-葡萄糖苷酶抑制活性。合成了7个未见文献报道的目标化合物,结构经1HNMR、13CNMR和MS确证。初步药理结果显示,所有衍生物均未见增强α-葡萄糖苷酶抑制活性。N-取代基对活性的影响较大;化合物5属于N,N-二取代衍生物,仍具有一定的α-葡萄糖苷酶抑制活性,值得进一步研究。  相似文献   

4.
柚皮素具有良好的抗氧化活性,但由于其生物利用率低,导致其应用受限.本文合成得到13种柚皮素的酰腙类衍生物,其中12种未被文献报道.采用ABTS、FRAP、DPPH 3种方法测定了合成衍生物与柚皮素的体外抗氧化活性.结果 显示13种化合物的抗氧化活性均强于柚皮素,其中8种衍生物的体外抗氧化活性是柚皮素活性的3到6倍.细胞...  相似文献   

5.
利用不同的芳香醛和乙酰丙酮缩合反应,合成了4种姜黄素类似物(A1~A4),化合物的结构经IR1、HNMR及MS等测试技术表征确证。采用邻苯三酚法研究化合物的体外抗氧化活性,台盼蓝细胞计数法研究体外抗肿瘤活性。结果表明,化合物A1、A2、A3的抗氧化活性和对K562细胞增殖的抑制活性均高于姜黄素,其活性与酚羟基密切相关。  相似文献   

6.
【目的】研究抗菌肽BuforinⅡ的衍生物BF2-A/B作用大肠杆菌后对胞内生物大分子合成的影响。【方法】紫外分光光度法检测抗菌肽对细胞DNA、RNA合成能力的影响, 考马斯亮蓝法检测抗菌肽对细胞总蛋白合成能力的影响, 分别用邻硝基苯-β-D-吡喃半乳糖苷法和对硝基苯磷酸二钠法检测抗菌肽对β-半乳糖苷酶及碱性磷酸酶表达活性的影响。【结果】BF2-A/B不优先抑制DNA合成, 而是优先抑制RNA和蛋白的合成。在相同浓度下, BF2-B抑制RNA合成的能力比BF2-A强, BF2-A抑制蛋白合成的能力比BF2-B强。胞内酶β-半乳糖苷酶和碱性磷酸酶的表达活性都在下降。【结论】BF2-A/B结合胞内核酸后, 没有首先影响DNA的复制功能, 而是优先抑制基因转录功能, 主要在转译水平上抑制蛋白的合成。  相似文献   

7.
微囊藻毒素对鱼蛋白磷酸酶抑制作用的研究   总被引:13,自引:1,他引:12  
微囊藻毒素是蓝藻的微囊藻属及其它几个属中的某些种或品系产生的次生代谢产物,由于这类蓝藻是产生淡水水华的主要生物,因而使得大量水体中有微囊藻毒素存在。这类毒素的一般结构为环(D一丙氨酸一L-X一赤一p甲基一D一异天冬酸一L-Y-Adda-D一异谷氨酸一N一甲基脱氢丙氨酸),X.Y为两种可变氨基酸,已发现五十多种异构体,其中存在较多,毒性较大的是LRYR,RR,L,Y,R分别为亮氨酸,酪氨酸,精氨酸。MacXintosh等人首次发现微囊藻毒素对蛋白磷酸酶有极强的抑制作用,随后两阶段致癌实验证明微囊藻毒素有极强的促肿瘤作用,…  相似文献   

8.
蛋白磷酸酶降低参与阿尔茨海默病(AD)神经元退化,本旨在探讨一氧化氮(NO)在tau蛋白过度磷酸化引起AD脑神经元退化中的可能作用。采用β-还原型尼克酰胺腺嘌呤二核苷酸磷酸-黄递酶(β-NADPH-d)组织化学技术研究不同剂量蛋白磷酸酶抑制剂岗田酸(OA)对嗜铬细胞瘤细胞株(PC12)一氧化氮合成酶(NOS)活性的影响。结果显示1nmol/LOA与PC12共培养48小时,NOS活性轻度增强;当增加OA浓度至10nmol/L时,培养24和48小时均可见NOS活性明显增强,结果表明根据1nmol/LOA抑制蛋白磷酸酶(PP)-2A,而10nmol/LOA除完全抑制PP-2A外,还部分抑制PP-1,提示PP-2A和PP-1的抑制均可增强NOS活性使NO产生增加,关于蛋白磷酸酶活性降低和NO产生增多与AD的关系和作用有待继续研究。  相似文献   

9.
抗细菌药物默诺霉素的化学生物学研究进展   总被引:1,自引:0,他引:1  
默诺霉素(moenomycins)家族类化合物主要是由链霉菌产生,属于磷酸糖脂类抗生素.该类化合物通过与细菌细胞壁肽聚糖糖基转移酶(peptidoglycan transferase,PGT)的活性位点结合,可以抑制众多革兰氏阳性细菌细胞壁的合成,具有很强的生物活性和重要的应用开发潜力.本文针对默诺霉素的化学结构、生物...  相似文献   

10.
目的:探讨脑缺血再灌后Akt和MAPK磷酸酶与JNK活性下调的关系。方法:采用成年清洁级雄性SD大鼠,建立四动脉阻断前脑缺血再灌注模型。缺血10min后再灌注不同时间(15min,1h,4h,24h)。侧脑室分别给予PI3K抑制剂LY294002(LY)和MAPK磷酸酶抑制剂放线菌酮(CHO)。免疫印迹观察p-Akt和p-JNK蛋白水平变化。结果:脑缺血再灌注4h,JNK的活性能被Akt抑制剂LY294002增强,表明激活的Akt能够下调JNK信号通路。而MAPK磷酸酶抑制剂放线菌酮能上调缺血后JNK活性,提示MAPK磷酸酶通过去磷酸化参与了JNK的活性抑制。结论:前脑缺血再灌后,激活Akt和MAPK磷酸酶参与了JNK信号通路负性调节,是抑制JNK诱导缺血后中枢神经损伤的重要机制。  相似文献   

11.
A series of greatly simplified microcystin analogues comprised only of Adda (the beta-amino acid common to the microcystins, nodularins, and motuporin,) and a single additional amino acid residue was synthesized and screened for inhibition of the protein phosphatases 1 and 2A. Several of the analogues were shown to be mid-nanomolar inhibitors of the enzymes.  相似文献   

12.
Immunoassays are increasingly used to investigate the production, properties and fates of the cyanobacterial hepatotoxic microcystins in vitro and in vivo. Responses of an ELISA immunoassay to microcystins have been determined using the authentic toxin antigen, microcystin-LR, and conjugation products between the toxin and glutathione, cysteine-glycine and cysteine. The antibodies against microcystin-LR crossreacted with the toxin conjugation products with similar affinities (96-112%) to that of microcystin-LR, when assayed at a concentration of 1 microg l(-1). Toxicity assessment of the conjugates, in comparison to microcystin-LR, indicated a reduction according to mouse bioassay. In vitro protein phosphatase inhibition assay indicated that the conjugates possessed approximately 3-9-fold lower toxicity than microcystin-LR.  相似文献   

13.
A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins.  相似文献   

14.
A series of acyclic, truncated microcystin analogues, comprised of the dienic beta-amino acid (Adda) and up to four additional amino acids characteristic of the parent toxin, was synthesized and screened for activity as inhibitors of PP1 and PP2A. Despite a recent report to the contrary for a microcystin-derived tetrapeptide degradation product, none approaches the potency of microcystin itself.  相似文献   

15.
A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins.  相似文献   

16.
The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda(5)]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda(5)]microcystin-LR and [d-Asp(3),ADMAdda(5)]microcystin-LR and a partial structure of three new [ADMAdda(5)]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis.  相似文献   

17.
Microcystis aeruginosa strain MRC is unique in its' possession of the mcyA-J gene cluster, which encodes microcystin synthetase, but its' inability to produce microcystins. M. aeruginosa strain MRD is genetically identical to MRC at numerous genomic loci examined, but produces a variety of microcystins, mainly with the amino acid tyrosine in the molecule. Zooplankton studies with Daphnia galeata and D. pulicaria , using the mutant (MRC) and its' wild type (MRD), showed for the first time that microcystins other than microcystin-LR can be responsible for the poisoning of Daphnia by Microcystis . Regardless of microcystin content, both Daphnia exhibited significantly reduced ingestion rates when fed with either strain of M. aeruginosa compared with the green alga Scenedesmus acutus . A disruption of the molting process in both Daphnia spp. was noted when these species were fed with MRC cells. Such symptoms on Daphnia have not been previously reported for cyanobacteria and may point to a bioactive compound, other than microcystin, which inhibits the hardening of protein–chitin complexes in Daphnia .  相似文献   

18.
Two types of commercially available ELISA kits for the immunoassay of cyanobacterial microcystins were evaluated for potential interference effects due to methanol, salinity, pH, plasticware and cyanobacterial extract. Of the treatments examined, methanol had the greatest effect, giving false positive microcystin concentrations with increasing methanol concentrations up to 30% (v/v) compared with the negative calibrators of each kit. False positive microcystin results were also produced with increasing salinity up to full strength seawater. Decreases in microcystin-LR equivalents were observed when assaying purified microcystin-LR at pH values between 6.25 and 10. Aqueous microcystin-LR solutions in plastic microcentrifuge tubes after pipetting with disposable plastic tips had lower toxin concentrations than expected when analysed by ELISA. Indicated microcystin concentrations in cyanobacterial extracts varied between kit types and the choice of blanks used. Although ELISAs can be useful tools for the screening of water and cyanobacterial blooms for microcystins and nodularins, users should be aware that commercial kits can be susceptible to interference by commonly encountered environmental and laboratory conditions and materials.  相似文献   

19.
Microcystins produced by cyanobacterial 'blooms' in reservoirs and lakes pose significant public health problems because they are highly toxic due to potent inhibition of protein serine/threonine phosphatases in the PPP family. A dehydrobutyrine (Dhb)-containing microcystin variant [Asp3, ADMAdda5, Dhb7]microcystin-HtyR isolated from Nostoc sp. was found to potently inhibit PP1, PP2A, PPP4 and PPP5 with IC50 values similar to those of microcystin-LR. However, in contrast to microcystin-LR, which forms a covalent bond with a cysteine residue in these protein phosphatases, Asp,ADMAdda,Dhb-microcystin-HtyR did not form any covalent interaction with PP2A. Since the LD50 for Asp,ADMAdda,Dhb-microcystin-HtyR was 100 microg kg(-1) compared to 50 microg kg(-1) for microcystin-LR, the data indicate that the non-covalent inhibition of protein phosphatases accounts for most of the harmful effects of microcystins in vivo. A 3-amino-6-hydroxy-2-piperidone containing cyclic peptide, nostocyclin, also isolated from Nostoc sp., was non-toxic and exhibited more than 500-fold less inhibitory potency towards PP1, PP2A, PPP4 and PPP5, consistent with the conclusion that potent inhibition of one or more these protein phosphatases underlies the toxicity of microcystins, both lacking and containing Dhb.  相似文献   

20.
The hepatotoxic cyclic heptapeptide toxins of cyanobacteria, collectively termed microcystins, are potent inhibitors of protein phosphatases PP1 and PP2A. The structure of microcystins resembles small, cyclic peptide secondary metabolites from fungi and eubacteria. Many of these metabolites are manufactured via a nonribosomal thio-template mechanism. We submit evidence that microcystin is synthesized by a similar mechanism. The organism used in this study was Microcystis aeruginosa PCC7820. Using the traditional ATP-32PPi exchange assay for thio-template activity, we found activity in the presence of the substrate d -amino acids occurring in microcystin. Thio-template mechanisms are known to be unaffected by protein synthesis inhibitors such as chloramphenicol. We subjected cultures in exponential and stationary growth to chloramphenicol and monitored culture health versus toxicity. Although the health of the treated cultures declined, the toxicity of the remaining cells increased. We developed an in vitro assay to measure microcystin synthesis in cell lysates in the presence of chloramphenicol. By supplementing the lysates with ATP and the substrate amino acids present in microcystin, we detected a fourfold increase in total microcystins over the course of 20 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号