首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
目的 将人星状病毒非结构蛋白nsP1 a./1基因连接到真核表达载体上,转染人胚肾上皮细胞48 h后检测其表达.方法 设计特异性引物PCR扩增人星状病毒非结构蛋白nsP1 a/1片段,分别插入真核表达载体pcDNA3.1(+)和pEGFP-N2载体,构建重组表达质粒pcDNA3.1(+)-nsP1a/1-His和pEGFP-N2-nsP1a/1.在转染试剂PEI的介导下将重组表达质粒分别转染293T细胞,转染48 h后分别在荧光显微镜下观察EGFP的表达以及通过Western blot检测nsP1a/1基因的表达.结果 重组表达质粒pcDNA3.1(+)-nsP1a/1-His和pEGFP-N2-nsP1a/1构建成功;转染pEGFP-N2-nsP1a/1后48 h能够在荧光显微镜蓝色激发光下观察到较强的黄绿色荧光;转染pcDNA3.1(+)-nsP1a/1-His后48 h收集细胞进行Western blot检测,能够检测到nsP1a/1-His融合报告基因的表达.结论 成功构建了人星状病毒非结构蛋白nsP1a/1基因真核表达质粒,并在人胚肾上皮细胞293T细胞获得表达,为进一步深入研究nsP1a/1在人星状病毒抵御宿主细胞抗病毒天然免疫中是否发挥作用奠定了基础.  相似文献   

2.
肠膜明串珠菌葡聚糖蔗糖酶基因的克隆与表达   总被引:2,自引:0,他引:2  
利用PCR方法从肠膜明串珠菌葡聚糖亚种(Leuconostoc mesenteroides subsp dextranicum)基因组DNA中扩增出了葡聚糖蔗糖酶基因dsrD并将其连接到表达栽体pET-30(a),得到重组质粒pET-30-dsrD,将重组质粒转化到大肠杆菌菌株Rosetta中,重组菌株SDS-PAGE结果显示有明显的170kD特异蛋白条带出现.经测定酶活力达1.2U/mL,约是原始菌株的30倍.  相似文献   

3.
[目的]原核表达纯化香港海鸥菌OsmC蛋白,并检测其抗氧化功能。[方法]通过PCR法扩增香港海鸥菌OsmC基因,将目的片段进行双酶切后连接到pET28a,构建重组质粒pET28a-OsmC并转化大肠杆菌,诱导OsmC蛋白表达,亲和层析纯化目的蛋白并利用氧化铁二甲酚橙实验检测其过氧化物酶活性。[结果]克隆得到全长基因,大小为441bp,编码147个氨基酸。得到重组表达质粒pET28a-OsmC,表达并纯化获得重组OsmC蛋白,OsmC蛋白能够降解H2O2。[结论]Osm C蛋白具有过氧化物酶活性,为研究香港海鸥菌的抗氧化机制奠定了基础。  相似文献   

4.
Rab GTPase家族蛋白是真核细胞内膜系统转运途径中重要的调控因子,不同的Rab家族成员在细胞具有功能多样性。为了解Rab2的功能,八肋游仆虫EoRab2a基因连接入原核表达质粒pGEX-6P-1中,获得重组表达质粒pGEX-6P-1-EoRab2a。质粒pGEX-6P-1-EoRab2a转化大肠杆菌BL21(DE3),经IPTG诱导,大肠杆菌BL21(DE3)/pGEX-6P-1-EoRab2a高效表达了可溶性GST-EoRab2a蛋白。融合蛋白GST-EoRab2a经亲和层析获得电泳纯蛋白。纯化后的GST-EoRab2a免疫BALB/c小鼠制备多克隆抗体。ELISA和Western blotting检测显示制备的抗体效价1∶25600,特异性良好。免疫荧光定位表明EoRab2a在游仆虫细胞质中点状分布,推测参与内质网与高尔基体间膜泡转运。    相似文献   

5.
利用自行筛选、鉴定的黑曲霉F246,根据植酸酶基因(phyA)成熟肽编码序列设计引物,直接PCR扩增phyA,经酶切分析、DNA测序和氨基酸序列分析证实phyA基因克隆成功。从pMD18T-phyA克隆中获得phyA编码序列,将其与pET30a 质粒连接,构建pET30a -phyA重组质粒,并在大肠杆菌中获得了高效表达。重组质粒经IPTG诱导表达,SDS-PAGE特异区带分子量为50kDa,此重组蛋白占大肠杆菌可溶性蛋白的36.62%,酶活性较天然植酸酶高8倍以上。因此,该phyA基因具有正常的生物学功能,对其进行深入研究,为大量获得高活性植酸酶以及开发新型微生态制剂奠定了基础。  相似文献   

6.
GST-HRB融合蛋白的表达与纯化   总被引:1,自引:0,他引:1  
构建GST-HRB重组质粒,进行融合蛋白的表达、纯化及鉴定.利用PCR扩增及基因重组技术,以pcDNA-3.1-HRB为模板扩增出HRB全基因序列,并将其插入带有GST(谷胱甘肽巯基转移酶)标签的原核表达载体pGEX-6P-1中,构建GST-HRB融合蛋白表达质粒.然后,将重组质粒GST-HRB转化至大肠杆菌Rosseta进行融合蛋白的表达.利用GST琼脂糖珠进行融合蛋白的纯化,最后应用SDS-PAGE电泳和Western blotting鉴定纯化的融合蛋白.结果表明,成功构建pGEX-6P-1-HRB原核表达载体,表达及纯化了GST-HRB融合蛋白.  相似文献   

7.
以丁酸梭菌(Clostridium butyricum)基因组DNA为模板,利用PCR技术扩增得到1,3-丙二醇氧化还原酶基因dhaT,将它连接到pMD18一T载体上,得到重组质粒pMD—dhaT,对此重组质粒进行序列测定,对其DNA序列分析表明,dhaT基因全长为1 158bp。将dhaT基因插入表达载体pSE-380中,构建成重组子pSE—dhaT,并在大肠杆菌JMl09中进行诱导表达。研究表明,以1,3-丙二醇为底物时,基因工程菌在37℃下,以1.0mmol/L IPTG诱导14h,酶活力达到16.28U/mL,比原始菌株提高5、6倍。  相似文献   

8.
利用PCR技术,从扣囊复膜孢酵母的总DNA中扩增得到β-葡萄糖苷酶(β-Glucosidase)基因(BGL1),长度为2596 bp,连接到pGEM-T载体上,用限制性内切酶切下目的基因,插入到巴斯德毕赤酵母表达载体pPIC9K中,使之位于α-因子信号肽下游,且与之同框,构建成重组质粒pSHL9K.通过电转化将重组质粒pSHL9K插入到Pichia pastoris GS115菌株染色体中,获得高效表达BGL1基因的毕赤酵母重组工程菌株.重组酶的最适温度为50℃,最适pH为5.4.培养基中β-葡萄糖苷酶活性最高可达47U/mL.  相似文献   

9.
目的表达狂犬病病毒糖蛋白(GP),用于狂犬病疫苗免疫抗体评估和狂犬病病毒糖蛋白功能的研究。方法采用分析软件,分析其可能的抗原表位,利用PCR方法扩增狂犬病病毒SRV9疫苗株G蛋白抗原位点区域基因,PCR产物经EcoRI和SalI双酶切后,插入大肠埃希菌表达载体pGEX-6P-1,构建重组表达质粒pGEX-6P-1/G87a和pGEX-6P-1/G100a。将重组质粒转化大肠埃希菌BL21感受态细胞中,在IPTG诱导下表达目的蛋白,进行SDS-PAGE分析。表达蛋白进行电洗脱纯化和Western blot鉴定分析。结果成功构建了pGEX-6P-1/G87a和pGEX-6P-1/G100a表达质粒,序列分析表明,插入片段大小分别为1314 bp和1275 bp。SDS-PAGE分析结果证明,在大肠埃希菌系统中成功表达了狂犬病病毒部分糖蛋白,表达的融合蛋白含有GST标签,大小分别约为74×103和73×103。Western blot鉴定结果表明,表达产物有抗原特异性并能与狂犬病病毒抗血清反应。结论利用大肠埃希菌表达系统成功表达了狂犬病病毒部分糖蛋白,表达产物有良好的反应原性。  相似文献   

10.
背景:碱性蛋白酶(alkaline protease)是一种具有广泛用途的工业酶制剂,其发酵活力目前仍不能满足工业生产需要。目的:旨在通过优化启动子及其组合来提高Bacillus subtilis WB600中碱性蛋白酶AprE的产量。方法:以Bacillus subtilis WB600为出发菌株,成功构建了含有4种不同类型启动子(P1、P2、P-1-2、P-2-1)的碱性蛋白酶AprE表达菌株。结果:含不同启动子的4株重组菌均可成功表达碱性蛋白酶,发酵48h,含单一启动子P2的重组菌株表达碱性蛋白酶的活力为4 041U/ml,是P1的1. 23倍。双启动子重组菌B. subtilis WB600/P-2-1-aprE表达的酶活性最高,是双启动子P-1-2的1. 35倍,达到了6 125U/ml。结论:为工业化高产碱性蛋白酶提供了一种有效策略。  相似文献   

11.
The sufABCDSE operon of the Gram-negative bacterium Escherichia coli is induced by oxidative stress and iron deprivation. To examine the biochemical roles of the Suf proteins, we purified all of the proteins and assayed their effect on SufS cysteine desulfurase activity. Here we report that the SufE protein can stimulate the cysteine desulfurase activity of the SufS enzyme up to 8-fold and accepts sulfane sulfur from SufS. This sulfur transfer process from SufS to SufE is sheltered from the environment based on its resistance to added reductants and on the analysis of available crystal structures of the proteins. We also found that the SufB, SufC, and SufD proteins associate in a stable complex and that, in the presence of SufE, the SufBCD complex further stimulates SufS activity up to 32-fold. Thus, the SufE protein and the SufBCD complex act synergistically to modulate the cysteine desulfurase activity of SufS. We propose that this sulfur transfer mechanism may be important for limiting sulfide release during oxidative stress conditions in vivo.  相似文献   

12.
Biosynthesis of iron-sulfur clusters (Fe-S) depends on multiprotein systems. Recently, we described the SUF system of Escherichia coli and Erwinia chrysanthemi as being important for Fe-S biogenesis under stressful conditions. The SUF system is made of six proteins: SufC is an atypical cytoplasmic ABC-ATPase, which forms a complex with SufB and SufD; SufA plays the role of a scaffold protein for assembly of iron-sulfur clusters and delivery to target proteins; SufS is a cysteine desulfurase which mobilizes the sulfur atom from cysteine and provides it to the cluster; SufE has no associated function yet. Here we demonstrate that: (i) SufE and SufS are both cystosolic as all members of the SUF system; (ii) SufE is a homodimeric protein; (iii) SufE forms a complex with SufS as shown by the yeast two-hybrid system and by affinity chromatography; (iv) binding of SufE to SufS is responsible for a 50-fold stimulation of the cysteine desulfurase activity of SufS. This is the first example of a two-component cysteine desulfurase enzyme.  相似文献   

13.
The structural biology of proteins mediating iron-sulfur (Fe-S) cluster assembly is central for understanding several important biological processes. Here we present the NMR structure of the 16-kDa protein YgdK from Escherichia coli, which shares 35% sequence identity with the E. coli protein SufE. The SufE X-ray crystal structure was solved in parallel with the YdgK NMR structure in the Northeast Structural Genomics (NESG) consortium. Both proteins are (1) key components for Fe-S metabolism, (2) exhibit the same distinct fold, and (3) belong to a family of at least 70 prokaryotic and eukaryotic sequence homologs. Accurate homology models were calculated for the YgdK/SufE family based on YgdK NMR and SufE crystal structure. Both structural templates contributed equally, exemplifying synergy of NMR and X-ray crystallography. SufE acts as an enhancer of the cysteine desulfurase activity of SufS by SufE-SufS complex formation. A homology model of CsdA, a desulfurase encoded in the same operon as YgdK, was modeled using the X-ray structure of SufS as a template. Protein surface and electrostatic complementarities strongly suggest that YgdK and CsdA likewise form a functional two-component desulfurase complex. Moreover, structural features of YgdK and SufS, which can be linked to their interaction with desulfurases, are conserved in all homology models. It thus appears very likely that all members of the YgdK/SufE family act as enhancers of Suf-S-like desulfurases. The present study exemplifies that "refined" selection of two (or more) targets enables high-quality homology modeling of large protein families.  相似文献   

14.
SufS is a cysteine desulfurase of the suf operon shown to be involved in iron-sulfur cluster biosynthesis under iron limitation and oxidative stress conditions. The enzyme catalyzes the conversion of L-cysteine to L-alanine and sulfide through the intermediate formation of a protein-bound cysteine persulfide in the active site. SufE, another component of the suf operon, has been previously shown to bind tightly to SufS and to drastically stimulate its cysteine desulfurase activity. Working with Escherichia coli proteins, we here demonstrate that a conserved cysteine residue in SufE at position 51 is essential for the SufS/SufE cysteine desulfurase activity. Mass spectrometry has been used to demonstrate (i). the ability of SufE to bind sulfur atoms on its cysteine 51 and (ii). the direct transfer of the sulfur atom from the cysteine persulfide of SufS to SufE. A reaction mechanism is proposed for this novel two-component cysteine desulfurase.  相似文献   

15.
Fe-S clusters are critical metallocofactors required for cell function. Fe-S cluster biogenesis is carried out by assembly machinery consisting of multiple proteins. Fe-S cluster biogenesis proteins work together to mobilize sulfide and iron, form the nascent cluster, traffic the cluster to target metalloproteins, and regulate the assembly machinery in response to cellular Fe-S cluster demand. A complex series of protein-protein interactions is required for the assembly machinery to function properly. Despite considerable progress in obtaining static three-dimensional structures of the assembly proteins, little is known about transient protein-protein interactions during cluster assembly or the role of protein dynamics in the cluster assembly process. The Escherichia coli cysteine desulfurase SufS (EC 2.8.1.7) and its accessory protein SufE work together to mobilize persulfide from l-cysteine, which is then donated to the SufB Fe-S cluster scaffold. Here we use amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize SufS-SufE interactions and protein dynamics in solution. HDX-MS analysis shows that SufE binds near the SufS active site to accept persulfide from Cys-364. Furthermore, SufE binding initiates allosteric changes in other parts of the SufS structure that likely affect SufS catalysis and alter SufS monomer-monomer interactions. SufE enhances the initial l-cysteine substrate binding to SufS and formation of the external aldimine with pyridoxal phosphate required for early steps in SufS catalysis. Together, these results provide a new picture of the SufS-SufE sulfur transferase pathway and suggest a more active role for SufE in promoting the SufS cysteine desulfurase reaction for Fe-S cluster assembly.  相似文献   

16.
The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase, where it also mediates interdomain interactions. Therefore, the core fold of SufE/IscU has been adapted to mediate interdomain interactions in diverse redox protein systems in the course of evolution.  相似文献   

17.
Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC2D complex, only in its reduced form (FADH2), which has the ability to reduce ferric iron. These results suggest that the SufBC2D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH2-dependent reductive mobilization of iron.  相似文献   

18.
The biosynthesis of iron–sulfur (Fe–S) clusters in Bacillus subtilis is mediated by the SUF‐like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe–S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe–S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe–S cluster assembly.  相似文献   

19.
Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.  相似文献   

20.
将从长春花中克隆的金属硫蛋白基因(GenBank登录号:DQ016341)构建到高效原核表达载体pGEX-6P-1,并命名为pGEX-6P-1-CrMT,并对GST-CrMT融合蛋白的表达进行诱导和条件优化。对不同的诱导温度、IPTG诱导浓度和诱导时间等条件的优化结果表明,随诱导时间增长GST-CrMT融合蛋白表达量提高,22℃,24 h和37℃,240 min均能诱导GST-CrMT融合蛋白的最大量表达,在0.8 mmol·L-1 IPTG浓度下可以有效诱导GST-CrMT融合蛋白的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号