首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid uptake and utilization of various nitrogen sources (amino acids, nitrite, nitrate and ammonia) were studied in Nostoc ANTH and i ts mu tant (Het(-)Nif(-)) isolate defective in heterocyst formation and N2-fixation. Both parent and its mutant grew at the expense of glutamine, asparagine and arginine as a source of fixed-nitrogen. Growth was better in glutamine-and asparagine-media as compared to that in arginine media. Glutamine and asparagine repressed heterocyst formation, N2-fixation and nitrate reduction in Nostoc ANTH, but arginine did so only partially. The poor growth in arginine-medium was not due to poor uptake rates, since the uptake rates were not significantly different from those for glutamine or asparagine. The glutamine synthetase activity remained unaffected during cultivation in media containing any one of the three amino acids tested. The uptake of amino acids was substrate-inducible, energy-dependent and required de novo protein synthesis. Nitrate and ammonium repressed ammonium uptake, but did not repress uptake of amino acids. In N2-medium (BG-11(0)), the uptake of ammonium and amino acids in the mutant was significantly higher than its parent strain. This was apparently due to nitrogen limitation since the mutant was unable to fix N2 and the growth medium lacked combined-N.  相似文献   

2.
Mutants of the cyanobacterium Anabaena variabilis that were capable of increased uptake of glutamine, as compared with that in the parental strains, were isolated. Growth of these mutants and their parental strains was measured in media containing N2, ammonia, or glutamine as a source of nitrogen. All strains grew well with any one of these sources of fixed nitrogen. Much of the glutamine taken up by the cells was converted to glutamate. The concentrations of glutamine, glutamate, arginine, ornithine, and citrulline in free amino acid pools in glutamine-grown cells were high compared with the concentrations of these amino acids in ammonia-grown or N2-grown cells. All strains capable of heterocyst differentiation, including a strain which produced nonfunctional heterocysts, grew and formed heterocysts in the presence of glutamine. However, nitrogenase activity was repressed in glutamine-grown cells. Glutamine may not be the molecule directly responsible for repression of the differentiation of heterocysts.  相似文献   

3.
SYNOPSIS. Euglena gracilis (bacillaris variety, strain SM-L1, streptomycin-bleached) used the following amino adds (10−3 M) as sole nitrogen source for growth on a defined medium: glycine, alanine, valine, leucine, isoleucine, serine, threonine, and glutamic acid. Aspartic acid was used at 10−2 M. Glutamine and asparagine were used at 10−3 M and were better N sources than their parent dicarboxylic amino acids. Not used as sole N source for growth were phenylalanine, tyrosine, tryptophan, cysteine, cystine, methionine, proline, hydroxyproline, histidine, arginine, lysine, and taurine. Astasia longa (Jahn strain) was more restricted than Euglena and used only asparagine and glutamine as N sources for growth.  相似文献   

4.
A commercial hydrolysate of casein stimulated production of lysine decarboxylase (EC 4.1.1.18) by Escherichia coli B. Cellulose and gel chromatography of this hydrolysate yielded peptides which were variably effective in this stimulation. Replacement of individual, stimulatory peptides by equivalent amino acids duplicated the enzyme levels attained with those peptides. There was no indication of specific stimulation by any peptide. The peptides were probably taken up by the oligopeptide transport system of E. coli and hydrolyzed intracellularly by peptidases to their constituent amino acids for use in enzyme synthesis. Single omission of amino acids from mixtures was used to screen them for their relative lysine decarboxylase stimulating abilities. Over 100 different mixtures were evaluated in establishing the total amino acid requirements for maximal synthesis of lysine decarboxylase by E. coli B. A mixture containing all of the common amino acids except glutamic acid, aspartic acid, and alanine increased lysine decarboxylase threefold over an equivalent weight of casein hydrolysate. The nine most stimulatory amino acids were methionine, arginine, cystine, leucine, isoleucine, glutamine, threonine, tyrosine, and asparagine. Methionine and arginine quantitatively were the most important. A mixture of these nine was 87% as effective as the complete mixture. Several amino acids were inhibitory at moderate concentrations, and alanine (2.53 mM) was the most effective. Added pyridoxine increased lysine decarboxylase activity 30%, whereas other B vitamins and cyclic adenosine 5′-monophosphate had no effect.  相似文献   

5.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

6.
7.
The effects of two amino acid analogues, viz., L-methionine-DL-sulphoximine and L-methyl-DL-methionine on growth, heterocyst differentiation and nitrogen fixation in the blue-green algaNostoc linckia have been studied with special reference to heterocyst spacing pattern. L-methionine-DL-sulphoximine strongly inhibited growth but produced an unusual number of heterocysts with changed heterocyst spacing pattern in both nitrogen-free and ammonium-containing media. L-methyl-DL-methionine was less effective than L-methionine-DL-sulphoximine. An attempt was also made to counteract the toxic effects of these analogues by supplying amino acids. Glutamine and methionine reversed the inhibitory effect of L-methionine-DL-sulphoximine while only methionine reversed the inhibitory effect of L-methyl-DL-methionine. Production of changed heterocyst spacing pattern in nitrogen-free and ammonium-containing media when supplemented with L-methionine-DL-sulphioximine suggests that ammonia may not be the inhibitor of heterocyst spacing pattern.  相似文献   

8.
The general control of amino acid biosynthesis was investigated in Candida spec. EH 15/D, using single and double mutant auxotrophic strains and prototrophic revertants starved for their required amino acids. These experiments show that starvation for lysine, histidine, arginine, leucine, threonine, proline, serine, methionine, homoserine, asparagine, glutamic acid or aspartic acid can result in derepression of enzymes. A correlation was found between the degree of derepression, growth of strains, and concentration of required amino acids. The amino acids pool pattern of mutants and revertants is different from that in the wild type strain.  相似文献   

9.
The effect of L-amino acids was investigated in organotypic tissue culture ofmesodermal tissue (spleen, myocardium) and ectodermal tissue (brain cortex) in mature rats. The low hydrophobic amino acids: asparagine, hystidine, serine, lysine, arginine and glutamine acid, induced the proliferation stimulation. The high hydrophobic amino acids had both the apoptose effect (spleen) and no effect at all (myocardium). The proliferation stimulation occurred in the ectodermal tissue under the effect of the high hydrophobic amino acids (asparagines acid, valine, threonine, methionine, leucine, isoleucine), whereas the low hydrophobic amino acids had no effect on the nervous tissue development. The combination of two amino acids one of which stimulated and another one inhibited the explant growth zone (or was not active in myocardium) lead to an increase of the stimulatory effect in meso- and ectodermal tissue. The amino acid modulated properties can be taken in consideration in synthesis of new regulatory peptides.  相似文献   

10.
Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.  相似文献   

11.
Effect of Sugars and Amino Acids on Androgenesis of Cucumis sativus   总被引:3,自引:1,他引:2  
The effects of sugars (sucrose, maltose, glucose and fructose) and amino acids (glutamine, glycine, arginine, asparagine and cysteine) on embryogenesis and plantlet regeneration from cultured anthers of Cucumis sativus L. cv. Calypso and Green Long were studied. Type and concentration of sugar and amino acid influenced embryogenesis. Among the different sugars tested, sucrose was the best for embryo induction with an optimal concentration of 0.25 M. Maximum of 72 and 80 embryos per 60 anthers of Calypso and Green Long, respectively, were induced on embryo induction medium [B5 (Gamborg, Miller and Ojima (1968) Exp. Cell Res. 50: 151–158) supplemented with 2.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 1.0 μM 6-benzyladenine (BA)] containing 0.25 M sucrose. The addition of amino acids to the embryo induction medium improved embryo yield with a combination of amino acids (glutamine, glycine, arginine, asparagine and cysteine of 1.0 mM each) giving the best response. Embryo differentiation was achieved on B5 medium supplemented with 0.25 μM of α-naphthaleneacetic acid (NAA), 0.25 μM kinetin (KN) and 0.09 M sucrose. Embryos were converted on B5 medium supplemented with abscisic acid (ABA) (10 μM) and 0.09 M sucrose. Embryos that developed on B5 medium supplemented with a combination of amino acids (glutamine, glycine, arginine, asparagine and cysteine of 1.0 mM each) exhibited the highest plantlet regeneration frequency.  相似文献   

12.
Rifampin-resistant (Rifr) mutants were isolated spontaneously from Bacillus subtilis strain 168. A fraction of the mutants did not grow on a minimal medium. A high concentration of one of the L-amino acids (glutamic acid, glutamine, arginine, proline, aspartic acid, or asparagine) was required to restore their growth on the medium. Further analysis of one of the mutants (strain RF 161) suggested that the mutant is unable to use ammonia as a nitrogen source and requires amino acids instead. Activity of glutamate synthase was not detected in the crude extract of the mutant. The Rifr mutation was closely located to cysA and the drug resistance was cotransformed with the property of amino acid requirement at 100% frequency. All revertants to prototrophy tested showed the rifampin-sensitive (Rifs) property. The activity of the DNA-dependent RNA polymerase of the mutant was resistant to rifampin. It is concluded that some alteration of RNA polymerase may cause absence of the activity of an enzyme involved in the nitrogen metabolism.  相似文献   

13.
The addition of DL-7-azatryptophan (AZAT), a tryptophan analog, to continuous cultures of Anabaena sp. strain CA grown with 10 mM nitrate as the nitrogen source resulted in the differentiation of heterocysts. Analysis of the intracellular amino acid pools of Anabaena sp. strain CA after the addition of AZAT showed a marked decline in the intracellular glutamate pool and a slight increase in the levels of glutamine. The in vitro activity of glutamate synthase, the second enzyme involved in primary ammonia assimilation in Anabaena spp., was partially inhibited by the presence of AZAT at concentrations which are effective in triggering heterocyst formation (15% inhibition at 10 microM AZAT and up to 85% inhibition at 1.0 mM AZAT). Azaserine, a glutamine analog and potent glutamate synthase inhibitor, had no effect on the triggering of heterocyst development from undifferentiated batch and continuous cultures of Anabaena sp. strain CA. However, the presence of 1.0 microM azaserine significantly decreased the intracellular glutamate pool and increased the glutamine pool. The addition of AZAT also caused a decrease in the C-phycocyanin content of Anabaena sp. strain CA as a result of its proteolytic degradation. AZAT also had an inhibitory effect on the nitrogenase activity of Anabaena sp. strain CA. All these results suggest that AZAT causes a general nitrogen starvation of Anabaena sp. strain CA filaments, triggering heterocyst synthesis.  相似文献   

14.
Availability of amino acids for the growth of rice callus tissuewas examined by supplying various kinds of amino acids to thetissue separately or in combination. When an amino acid wassupplied alone as the sole source of nitrogen, only the followingfive amino acids were found to favour the growth of callus tissue;arginine, alanine, asparagine, glutamine and proline. In combinationwith other acids, both AHCH and CMAA were very effective instimulating the growth of tissue, but EHCH was inhibitory. Whenmethionine or arginine was excluded from the CMAA medium, callusgrowth on the medium was reduced significantly. The effect producedby omitting methionine suggested that some amino acid interactionwas involved in this instance. (Received February 19, 1970; )  相似文献   

15.
16.
17.
To explore the mechanism of the stimulation of glycogen synthesis by amino acids (1) we have studied the effects of transaminase inhibitors and of mercaptopicolinic acid, (MPA) an inhibitor of phosphoenol pyruvate carboxykinase. Mercaptopicolinic acid enhanced glycogen synthesis from fructose, dihydroxyacetone and xylitol. Stimulation of glycogen synthesis with hepatocytes from fasted rats by 0.5 mM mercaptopicolinic acid was 50–70% as effective as 10 mM glutamine. With hepatocytes from fed rats, the stimulation of glycogen synthesis by mercaptopicolinic acid was more pronounced, and stimulation by mercaptopicolinic acid and amino acids was additive. Glycogen synthesis as high as 1% in wet weight per hour was attained in hepatocytes with a high initial glycogen content. Over 80% of glycogen synthase was in the active (a) form. Amino oxyacetic acid greatly depressed or abolished the stimulatory effect of glutamine and asparagine and of mercatopicolinic acid, and induced extensive glycogen breakdown in hepatocytes of fed rats.  相似文献   

18.
The ability of individual amino acids to regulate nitrate uptakeand induction was studied in a Zea mays embryo cell line grownin suspension culture. The maize cells exhibited a marked preferencefor absorbing amino acids over nitrate when both were presentin culture medium. The addition of an individual amino acid(2 mM glutamine, glycine, aspartic acid, or arginine) to theculture medium with 1 mM nitrate completely inhibited nitrateuptake and resulted in a cycle of low levels of nitrate influxfollowed by efflux to the growth medium. Glutamine was readilyabsorbed by the cells and was particularly effective in supportingoptimum cell growth in the absence of an inorganic nitrogensource as compared to the three other amino acids evaluated.However, neither glutamine nor any of the remaining 19 proteinaceousamino acids appeared to be solely responsible for regulationof nitrate uptake and induction. The ability of amino acidsto regulate nitrate uptake and assimilation appears to be morerelated to their overall levels in the cell rather than to anaccumulation of a specific amino acid. Key words: Amino acids, nitrate uptake, maize, regulation, cell suspension culture  相似文献   

19.
Glutamine synthetase (GS) was isolated from log phase cells and purified to a single protein as evidenced by gel electrophoresis. Protamine and ammonium sulfate precipitation and chromatography on DEAE-cellulose and Bio-Gel resulted in 380-fold purification. The enzyme was most sensitive to alanine (85% inhibition at 0.1 mM) but was also inhibited by glycine, arginine and serine. Combinations of inhibitory amino acids or nucleotides (AMP, ADP, ATP) exhibited cumulative inhibition. Cooperative inhibition was noted with CTP and any single nucleotide. Inhibition by CTP alone was uncompetitive with respect to glutamine. The enzyme was also regulated by the energy charge of the cell.  相似文献   

20.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is sensitive to nitrogen catabolite repression. In cell cultures growing in complete ammonia medium, asparaginase II synthesis is repressed in the early exponential phase but becomes derepressed in the midexponential phase. When amino acids such as glutamine or asparagine replace ammonium ion in the growth medium, the enzyme remains repressed into the late exponential phase. The three nitrogen compounds permit a similar rate of cell growth and are assimilated at nearly the same rate. In the early exponential phase the internal amino acid pool is larger in cells growing with glutamine or asparagine than in cells growing with ammonium sulfate as the sole source of nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号