首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of amino acid supplementation to a rice diet on the niacin requirement of rats was studied in relation to the phenomenon of niacin or tryptophan deficiency caused by the addition of threonine or gelatin to a low casein diet. Supplementation of a mixture of all limiting amino acids other than tryptophan to a 90% rice diet stimulated the growth of rats only temporarily without additional supplementation of niacin. However, the supplementation of the same mixture of limiting amino acids to a diet containing an amino acid mixture simulating rice protein, clearly decreased the growth of rats after a temporary increase. The growth was then remarkably improved by the further addition of niacin or niacin plus tryptophan. This result supports the hypothesis that the addition of all limiting amino acids other than tryptophan, increases the use of tryptophan for protein synthesis and may lead to niacin deficiency.  相似文献   

2.
To discover the role of the kidney in tryptophan degradation, especially tryptophan to niacin, rat kidneys were injured by feeding a diet containing a large amount of adenine. The kidney contains very high activity of aminocarboxymuconate-semialdehyde decarboxylase (ACMSD), which leads tryptophan into the glutaric acid pathway and then the TCA cycle, but not to the niacin pathway. On the other hand, kidneys contain significant activity of quinolinate phosphoribosyltransferase (QPRT), which leads tryptophan into the niacin pathway. The ACMSD activity in kidneys were significantly lower in the adenine group than in the control group, while the QPRT activity was almost the same, however, the formations of niacin and its compounds such as N1-methylnicotinamide and its pyridones did not increase, and therefore, the conversion ratio of tryptophan to niacin was lower in the adenine group than in the control group. The contents of NAD and NADP in liver, kidney, and blood were also lower in the adenine group. The decreased levels of niacin and the related compounds were consistent with the changes in the enzyme activities involved in the tryptophan-niacin metabolism in liver. It was concluded from these results that the conversion of tryptophan to niacin is due to only the liver enzymes and that the role of the kidney would be extremely low.  相似文献   

3.
Summary By screening 15,000 mutants, tyrosine auxotrophs T6, T7, and tryptophan auxotrophs P6, P8, were obtained. After primary production test, mutant P6 was chosen for further investigation. Fractional factorial design(FFD) and steepest ascent method(SAM) were used to optimize the medium component Mutant P6 had 17.1 g/l L-phenylalanine production when 0.44 g/l tryptophan was added. When Corynebacterium glutamicum P6 was cultivated in the optimum medium, L-phenylaianine production increased 22% as compared with the parent strain CCRC 18335, and the interference of tryptophan during the purification process was removed.  相似文献   

4.
It is known that niacin itself is not necessary in rats when tryptophan is given in adequate amounts, because rats can biosynthesize niacin from tryptophan. In our experiment, young rats were fed on a 20%, 40%, 60%, or 70% casein diet with or without niacin. The rats fed on the 20%, 40%, and 60% casein diets did not require niacin for growth, but the rats fed on the 70% casein diet needed it. This phenomenon was attributed to the supposition that liver aminocarboxymuconate-semialdehyde decarboxylase activities increased according with the dietary casein levels. The conversion ratio of tryptophan-niacin in rats fed on the 70% casein diet became extremely low, and then the rats needed niacin.  相似文献   

5.
The present study was conducted to survey functional biomarkers for evaluation of niacin nutritional status. Over 500 enzymes require niacin as a coenzyme. Of these, we chose the tryptophan degradation pathway. To create niacin-deficient animals, quinolinic acid phosphoribosyltransferase-knock out mice were used in the present study because wild type mice can synthesize nicotinamide from tryptophan. When the mice were made niacin-deficient, the urinary excretion of xanthurenic acid (XA) was extremely low compared with control mice; however, it increased according to the recovery of niacin nutritional status. The urinary excretion of kynurenic acid (KA) was the reverse of XA. Kynurenine 3-monooxygenase, which needs NADPH, was thought to be suppressed by niacin deficiency. Thus, we calculated the urinary excretion ratio of XA:KA as a functional biomarker of niacin nutrition. The ratio increased according to recovering niacin nutritional status. Low values equate with low niacin nutritional status.  相似文献   

6.
Dietary excess of leucine affects tryptophan–niacin metabolism adversely and has thus been implicated in the etiology of pellagra. To understand the biochemical basis of leucine-induced changes in tryptophan–niacin metabolism the effect of leucine on enzymes of tryptophan–niacin metabolism was investigated. Excess of leucine in the diet had no effect on rat liver 3-hydroxyanthranilate oxygenase and nicotinate phosphoribosyltransferase but significantly decreased the activity of quinolinate phosphoribosyltransferase of rat liver and kidney. The activities of tryptophan oxygenase in liver and picolinate carboxylase in kidney were significantly higher in leucine-fed animals than in the controls. Also, oxidation of [U-14C]tryptophan in vivo was higher in leucine-fed animals. Increased picolinate carboxylase and decreased quinolinate phosphoribosyltransferase activities would result in a decrease in NAD formation from dietary tryptophan. Lowered NAD formation from tryptophan particularly when the niacin concentrations in the diet are marginal would result in a state of conditioned niacin deficiency.  相似文献   

7.
Arthrobacter species, isolated from the leaf cavities and the microsporocarps of the aquatic fern species Azolla pinnata and Azolla filiculoides, produced indole-3-acetic acid (IAA) in culture when the precursor tryptophan was added to the medium. No IAA production was detected in the absence of tryptophan. Maximum IAA formation was obtained in the first 2 d of incubation. Part of the tryptophan was transformed to N alpha-acetyl-L-tryptophan.  相似文献   

8.
We have recently reported that the antituberculosis drug, pyrazinamide (PZA), caused a significant increase in the conversion ratio of tryptophan to niacin in rats. In the present work, we investigated whether or not pyrazinoic acid (POA), a putative metabolite of PZA, increased the conversion ratio of tryptophan to niacin. Weaning rats were fed with a niacin-free and tryptophan-limited diet (negative control diet), or with the negative control diet supplemented with 0.003% nicotinic acid (positive control diet) or 1% POA (test diet) for 27 days. The growth rate was almost same between the groups fed on the positive control diet and the test diet. Dietary POA significantly increased the conversion ratio of tryptophan to niacin. Although POA did not directly inhibit the activity of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), the rate-limiting enzyme in the tryptophan-niacin pathway, liver ACMSD activity was only not detected in the test diet group. These results suggest that a derivative of POA metabolized by rats inhibited the ACMSD activity.  相似文献   

9.
1. The addition of penicillin greatly increases the production of phage in bacterial suspensions containing 2.5 to 3.5 x 10(8) cells in 0.4 ml. broth plus 6.6 ml. Locke's solution. 2. Addition of niacin also greatly increases the formation of phage in the above system without the addition of penicillin. 3. The results indicate that niacin is necessary for phage production and that bacteria cannot utilize niacin in the presence of penicillin. 4. Staphylococcus muscae will grow in the synthetic medium of Fildes but do not form phage unless broth or yeast extract is added. 5. Phage formation requires the presence of one or more factors, besides niacin, present in broth and yeast extract which are not essential for bacterial growth. Penicillin does not prevent the utilization of the unknown substance or substances by the bacteria. 6. A solution containing biotin, guanine, adenine, beta-alanine, riboflavin, uracil, pyridoxamine, guanylic acid, adenylic acid, yeast nucleic acid, choline, p-aminobenzoic acid, a flavin component from liver, ribose, thymine, xanthine, folic acid, inositol, p-aminophenyl alanine, pantothentic acid and a strepogenin concentrate cannot replace broth or yeast extraction in increasing phage formation in the synthetic medium of Fildes. 7. The results indicate there is a continual competition between the bacteria and phage for certain essential building elements. 8. The results are discussed in relation to possible methods of control of virus diseases.  相似文献   

10.
The effects of pyrazinamide on the metabolism of tryptophan to niacin and of tryptophan to serotonin were investigated to elucidate the mechanism for pyrazinamide action against tuberculosis. Weanling rats were fed with a diet with or without 0.25% pyrazinamide for 61 days. Urine samples were periodically collected for measuring the tryptophan metabolites. The administration of pyrazinamide significantly increased the metabolites, 3-hydroxyanthranilic acid and beyond, especially quinolinic acid, nicotinamide, N'-methylnicotinamide, and N1-methyl-4-pyridone-3-carboxamide, and therefore significantly increased the conversion ratio of tryptophan to niacin and the blood NAD level . However, no difference in the upper metabolites of the tryptophan to niacin pathway such as anthranilic acid, kynurenic acid and xanthurenic acid was apparent between the two groups. No difference in the concentrations of trytptophan and serotonin in the blood were apparent either. It is suggested from these results that the action of pyrazinamide against tuberculosis is linked to the increase in turnover of NAD and to the increased content of NAD in the host cells.  相似文献   

11.
Shake flask cultures ofClaviceps paspali (Stev. et Hall) andClaviceps purpurea (Fr.) Tul. on simple synthetic medium have been studied. Both strains grown in the absence of added tryptophan accumulate extra endogenous tryptophan. A certain concentration of cell-pool tryptophan is needed to promote alkaloid synthesis. Alkaloid production commences while tryptophan synthetase activity is increasing. In the alkloid-producing phase cell-pool tryptophan shows a single minimum while the change in level of cell-protein tryptophan is negligible. Alkaloid formation is suggested to reflect a regulatory device to keep endogenous tryptophan balanced. By adding amitrole the alkaloid spectrum is changed. The tryptophan-histidine cross-pathway probably serves a useful function inthe biosynthesis of ergot alkaloids.  相似文献   

12.
We have previously reported that the administration of a large amount of di(n-butyl)phthalate (DBP) increased the conversion ratio of tryptophan to niacin in rats. In the present experiment, the effect of di(2-ethylhexyl)phthalate (DEHP) on the conversion ratio and how altering the conversion ratio of tryptophan to niacin depended on the concentration of DEHP were investigated to elucidate the toxic mechanism of phthalic acid esters (PhE). Rats were fed with a diet containing 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1.0%, or 3.0% DEHP for 21 days. To assess the conversion ratio of tryptophan to niacin, urine samples were collected at the last day of the experiment and measured for metabolites on the tryptophan-niacin pathway. The conversion ratio increased with increasing dietary concentration of DEHP above 0.05%; the conversion ratio was about 2% in the control group, whereas it was 28% in the 3.0% DEHP group. It is suggested that the inhibition of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) by DEHP or its metabolites caused this increase in the conversion ratio. We conclude that PhE such as DEHP and DBP disturbed the tryptophan-niacin metabolism.  相似文献   

13.
The administration of glycemia-affecting chemicals such as alloxan, streptozotocin, and 6-aminonicotinamide decreases the conversion ratio of tryptophan to niacin. Adrenalin is also known to increase the glucose level. For this reason, the effects of adrenalin on the conversion ratio were investigated. We found that the conversion ratio of tryptophan to niacin was reduced to half by the intraperitoneal injection of adrenalin at 75 μg/day/rat (body weight, about 250 g) every day for 7 days. Niacin decreases adrenalin-stimulated glycogenolysis via stimulating phosphodiesterase activity or depressing adenyl cyclase activity. Accordingly, in urgent need of energy, animals would have to decrease the concentration of niacin within the body.  相似文献   

14.
The effects of dietary orotic acid on the metabolism of tryptophan to niacin in weaning rats was investigated. The rats were fed with a niacin-free, 20% casein diet containing 0% (control diet) or 1% orotic acid diet (test diet) for 29 d. Retardation of growth, development of fatty liver, and enlargement of liver were observed in the test group in comparison with the control group. The concentrations of NAD and NADP in liver significantly decreased, while these in blood did not decrease compared to the control group. The formation of the upper metabolites of tryptophan to niacin such as anthranilic acid, kynurenic acid, and 3-hydroxyanthranilic acid were not affected, but the quinolinic acid and beyond, such as nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, were significantly reduced by the administration of orotic acid. Therefore, the conversion ratio of tryptophan to niacin significantly decreased in the test group in comparison with the control group.  相似文献   

15.
Derivatives of Escherichia coli strain W3110 with increased tryptophan synthase (TS) activity were constructed. The biosynthesis of serine was shown to limit tryptophan production in minimal medium with indole as precursor. In the presence of serine and indole we obtained a correlation between the specific activity of TS and the specific productivity (qp) of tryptophan. Supplementation of the growth medium with glycine enhanced qp two-fold. In a strain with high serine hydroxymethyltransferase (SHMT) activity no such increase of tryptophan productivity was observed, although crude extracts from these cells were shown to produce tryptophan with indole, one-carbon units and glycine as precursors. Growth of the strain with high SHMT activity was inhibited in a medium with high glycine concentration. This inhibition could not be released by addition of isoleucine and valine. In a buffer system with permeabilized cells high in specific TS and SHMT activities we did not obtain any tryptophan production in presence of indole, glycine, one-carbon units and cofactors. On the other hand, in a buffer system with indole and serine as precursors we obtained high qp of tryptophan [13.3 g tryptophan (g dry wt cells)-1 h-1], which was correlated to the TS specific activity.  相似文献   

16.
Evidence obtained from incubation of corn (Zea mays cv. Golden Bantam) seedlings in dl-[benzene ring-U-(14)C]tryptophan, l-[5-(3)H]tryptophan, l-[U-(14)C]aspartate and [U-(14)C]glycerol indicates that niacin is synthesized in these plants via oxidative degradation of tryptophan. Aspartate and glycerol do not appear to be precursors of niacin in corn seedlings.  相似文献   

17.
18.
The Rhizobium sp. isolated from the root nodules of Clitoria ternatea L., a leguminous twiner, produced a high amount of IAA (16.4 μg/ml) from tryptophan in an unsupplemented basal medium. The production of IAA started simultaneously with the growth and had no different growth and production phase. The growth and production were parallel and increased up to 45–50 h. The IAA production by the Rhizobium sp. was increased by 520% when the medium was supplemented with fructose (1.5%), MnSO4 (1.0 μg/ml), riboflavin (0.10 μg/ml) and Triton X-100 (0.01%). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

19.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

20.
Pyridine nucleotide metabolism in mammalian cells in culture   总被引:2,自引:0,他引:2  
The biosynthesis of pyridine nucleotides has been examined in a number of mammalian cell lines in culture. In all lines examined, nicotinamide is incorporated by a biochemical pathway distinct from the Preiss-Handler pathway for nicotinic acid. In at least the human cell line D98/AH2, there is no detectable endogenous synthesis of the pyridine ring from tryptophan. Although most cell lines examined (hamster BHK 21/13, mouse L929 and human D98/AH2) use either nicotinic acid or nicotinamide as a precursor for DPN and TPN, two mouse cell lines, 3T3-4E and LM CIID, are unable to utilize nicotinic acid as a source of the pyridine ring. If nicotinic acid is present in the medium, substantial amounts of intracellular desamido DPN accumulate suggesting that the last step (desamido DPN→DPN) is limiting in the Preiss-Handler pathway. With nicotinamide, the only compound which accumulates in substantial amounts apart from DPN and TPN is nicotinamide ribose; there is no detectable NMN. The results of pulse-labeling experiments suggest that nicotinamide ribose may be an intermediate in the nicotinamide pathway. Following growth of D98/AH2 cells in high concentrations of niacin, biosynthesis of DPN from nicotinamide was completely inhibited for at least six hours. The converse experiment revealed no inhibition of niacin incorporation. This observation suggests that a niacin pathway intermediate, which present evidence indicates is desamido-DPN. can inhibit nicotinamide utilization. Newly synthesized DPN turns over with a half-life of two hours in azaserine-treated D98/AH2 cells. In the absence of azaserine, the nicotinamide moiety of newly synthesized DPN is lost from D98/AH2 cells to the medium with a half-life of eight hours. About 80% of the nicotinamide is lost to medium as nicotinamide ribose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号