首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stimulation of washed human platelets with alpha-thrombin was accompanied by aggregation, formation of inositol phosphates and phosphatidic acid, liberation of arachidonic acid, mobilization of intracellular Ca2+ stores, and influx of Ca2+ from the extracellular medium. Each of these responses was potentiated by a short pretreatment with epinephrine, although alone this agent was ineffective. A prolonged (5 min) stimulation with alpha-thrombin desensitized both phospholipase C and Ca2+ mobilization to a further thrombin challenge. Epinephrine added following thrombin desensitization restored both the ability of thrombin to release Ca2+ stores and stimulate inositol phospholipid hydrolysis. Resensitization was mediated by alpha 2-adrenergic receptors and lasted about 3 min, after which the Ca2+ levels returned again to basal levels. Pretreatment of platelets with phorbol dibutyrate at concentrations which specifically activate protein kinase C increased the rate of desensitization of the thrombin-induced release of Ca2+ stores and abolished the ability of epinephrine to restore the thrombin response. The protein kinase C inhibitor, staurosporine, blocked the inhibitory effect of phorbol ester and also reduced the rate of desensitization of thrombin and subsequent epinephrine action. These results suggest that thrombin activation of protein kinase C phosphorylates and inactivates a signaling protein which is common to both thrombin and alpha 2-adrenergic receptors. This protein is involved in thrombin stimulation of phospholipase C but is not directly stimulatory since epinephrine alone does not activate this enzyme. We searched for a known second messenger protein common to both thrombin and alpha 2-adrenergic receptors which was phosphorylated in intact platelets by protein kinase C in parallel with thrombin-induced desensitization. The alpha subunit of the inhibitory GTP-binding protein, Gi, was the only candidate which fulfilled all of these criteria as shown by immunoprecipitation. Therefore, we suggest that alpha i maintains the thrombin receptor in a state which can couple to phospholipase C when activated with thrombin. This permissive state of alpha i is blocked by phosphorylation by thrombin-activated protein kinase C.  相似文献   

2.
This study examined cross talk between phospholipase C-coupledmuscarinic M3 and bradykininB2 receptors coexpressed inChinese hamster ovary (CHO) cells. Agonists of either receptor enhanced phosphoinositide signaling (which rapidly desensitized) and caused protein kinase C (PKC)-independent, homologous receptorphosphorylation. Muscarinic M3 butnot bradykinin B2 receptors werealso phosphorylated after phorbol ester activation of PKC. Consistentwith this, muscarinic M3 receptorswere phosphorylated in a PKC-dependent fashion after bradykininB2 receptor activation, butmuscarinic M3 receptor activationdid not influence bradykinin B2receptor phosphorylation. Despite heterologous phosphorylation ofmuscarinic M3 receptors, phosphoinositide and Ca2+signaling were unaffected. In contrast, marked heterologousdesensitization of bradykinin-mediated responses occurred despite noreceptor phosphorylation. This desensitization was associated with asustained component of muscarinic receptor-mediated signaling, whereasbradykinin's inability to influence muscarinic receptor-mediatedresponses was associated with rapid and full desensitization ofbradykinin responses. Thus the mechanism of functional cross talk mostlikely involves depletion of a shared signaling component. These data demonstrate that receptor phosphorylation is not a prerequisite forheterologous desensitization and that such desensitization is notobligatory after heterologous receptor phosphorylation.

  相似文献   

3.
alpha-Thrombin (thrombin) stimulates phospholipase C and modulates the activity of adenylate cyclase in a number of cell types via G protein-coupled receptors. It is also a potent growth factor, notably for a line of hamster fibroblasts (CCL39 cells). Recently, predicted amino acid sequences for human and hamster thrombin receptors have been reported that display a putative thrombin cleavage site in the N-terminal extracellular domain. Synthetic peptides corresponding to 14 residues carboxyl to the presumed thrombin cleavage site of the human receptor have been shown to activate platelets as well as the thrombin receptor expressed in Xenopus oocytes. In the present study we have examined the effects of synthetic peptides corresponding to the same region of the hamster receptor (S-42-L-55) and shorter peptides (2-7 residues) on signal transducing systems in CCL39 cells. Our results indicate that hamster receptor peptides of greater than or equal to 5 residues effectively stimulate phospholipase C in CCL39 cells via the thrombin receptor and induce rapid desensitization of the response. The same peptides also inhibit adenylate cyclase in a pertussis toxin-sensitive manner. Although the peptides are potent agonists of serotonin release in platelets, unlike thrombin, by themselves they are not mitogenic. However, they potentiate DNA synthesis in cooperation with growth factors possessing tyrosine kinase receptors. Hence, we conclude that the potent mitogenic action of thrombin cannot be accounted for solely by the activation of the cloned receptor. We postulate the existence of an additional receptor activated by thrombin, which is required for its full mitogenic potential.  相似文献   

4.
5.
During thrombus formation, thrombin, which is abundantly present at sites of vascular injury, activates platelets in part via autocrine-produced ADP. We investigated the signaling pathways by which thrombin and ADP in synergy induced platelet Ca(2+) elevation and procoagulant activity, and we monitored the consequences for the coagulation process. Even at high thrombin concentration, autocrine and added ADP enhanced and prolonged Ca(2+) depletion from internal stores via stimulation of the P2Y(12) receptors. This P2Y(12)-dependent effect was mediated via two distinct signaling pathways. The first is enhanced Ca(2+) mobilization by the inositol 1,4,5-trisphosphate receptors due to inhibition of protein kinase A. The second pathway concerns prolonged activation of phosphoinositide 3-kinase (PI3-K) and phospholipase C. Experiments with phosphoinositide 3-kinase isoform-selective inhibitors and p110gamma deficient platelets demonstrated that the phosphoinositide 3-kinase beta and not the phosphoinositide 3-kinase gamma isoform is responsible for the prolonged Ca(2+) response and for the subsequent increases in procoagulant activity and coagulation. Taken together, these results demonstrate a dual P2Y(12)-dependent signaling mechanism, which increases the platelet-activating effect of thrombin by prolongation of Ca(2+) elevation, thereby facilitating the coagulation process.  相似文献   

6.
The signal transduction from insulin to its receptors and Ras has been extensively studied, while little has been reported beyond these steps. We found that the expression of human interleukin 6 gene under the control of immediate early gene promoter of human cytomegalovirus was enhanced by insulin sitmulation in Chinese hamster ovary cells. The induction effect of insulin was not significantly affected by inhibitors or activators of conventional protein kinase C, cAMP dependent protein kinase and phosphoinositide -3 kinase, however, pre-incubation of the cells with D609, a specific inhibitors of phosphatidylcholine-specific phospholipase C completely abolished the induction effect. These results clearly demonstrate that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of hIL-6 expression from the human cytomegalovirus promoter in Chinese hamster ovary cells and strongly suggest that it plays an important role in the insulin signaling pathways.Abbreviations CHO – Chinese hamster ovary; hCMV promoter – immediate early gene promoter of human cytomegalovirus; hIL-6 – human interleukin 6; PC-PLC-phosphatidylcholine-specific phospholipase C; PI-3 kinase – phosphoinositide 3 kinase; PKA – cAMP dependent protein kinase; PKC – protein kinase C.  相似文献   

7.
Phosphoinositide hydrolysis was studied in primary cultures of rat cerebellar astrocytes pre-labeled with [3H]myo-inositol. Among the agonists examined, the rank order of efficacies in causing phosphoinositide hydrolysis was bradykinin > endothelin-1 > ATP > norepinephrine. The bradykinin response was robust (24-fold increase) with EC50 value of 30 nM and saturating concentration of 1 μM. Preincubation of cells with pertussis toxin did not affect the activation of phosphoinositide turnover by bradykinin. Although short-term (within 90 min) treatment of cells with phorbol dibutyrate attenuated bradykinin-induced phosphoinositide breakdown, the inhibitory effect was lost after 3–6 h of phorbol dibutyrate treatment. Extended (24 h) preincubation resulted in a potentiation of bradykinin response. Homologous desensitization of bradykinin response was observed in cells prestimulated with bradykinin for up to 6 h. However, similar to the effect of phorbol dibutyrate. 24-h pretreatment with bradykinin selectively sensitized the response to bradykinin. Up-regulation of the bradykinin response was also observed in cells prestimulated with endothelin-1 or norepinephrine for 24 h, although these treatments resulted in only homologous desensitization to their own response. Our results suggest that cultured cerebellar astrocytes express bradykinin receptors coupled to phospholipase C and in these cells protein kinase C plays a more prominent role in the negative-feedback regulation of bradykinin-evoked phosphoinositide response.  相似文献   

8.
RGS2, a member of the Regulators of G-protein Signaling family, modulates the activity of G-proteins coupled to the phosphoinositide signal transduction system, but little is known about what regulates RGS2. In human neuroblastoma SH-SY5Y cells stimulation of muscarinic receptors by carbachol activates phosphoinositide signaling and also caused a rapid, large, and long lasting increase in RGS2 mRNA levels. Direct activation of protein kinase C also rapidly increased RGS2 mRNA levels. Inhibition of protein kinase C with Ro31-8220, GF109203x, or Go6976 or down-regulation of protein kinase C inhibited increases in RGS2 mRNA levels induced by carbachol or by the activation of protein kinase C. Blockade of calcium signaling did not alter carbachol-induced increases in RGS2 mRNA levels. Neither activation of epidermal growth factor receptors nor stimulation of cyclic AMP production with forskolin increased RGS2 mRNA levels. Pretreatment with actinomycin D blocked increases in RGS2 mRNA levels but caused a surprisingly small, although statistically significant, partial blockade of protein kinase C-mediated feedback inhibition of carbachol-induced phosphoinositide hydrolysis. Thus, RGS2 mRNA levels are increased by activation of muscarinic receptors coupled to the phosphoinositide signal transduction system through a protein kinase C-dependent mechanism. This action may contribute to negative feedback control of this signaling cascade, but because the small contribution to negative feedback contrasts with the large and prolonged elevations in RGS2 mRNA levels, we speculate that its primary role may be in modulating other signaling components.  相似文献   

9.
Rat 6 fibroblasts that stably overexpress cDNA for the beta 1 isozyme of protein kinase C (PKC3 cells) were used to determine the effect of protein kinase C (PKC) overexpression on hormonal stimulation of phospholipid hydrolysis. In control Rat 6 cells, inositol trisphosphate levels (InsP3) were increased 9-fold in 15 s in response to 10 nM alpha-thrombin, compared with only a 2-fold increase in PKC3 cells. PKC overexpression also inhibited thrombin-stimulated production of 1,2-diacylglycerol, the other product of phosphatidylinositol 4,5-bisphosphate hydrolysis, by 73% at 15 s. In permeabilized cells, PKC overexpression greatly reduced guanosine thiotriphosphate-stimulated InsP3 accumulation, but did not affect InsP3 stimulation by increased free calcium concentration. These data suggest that desensitization of thrombin-stimulated phosphoinositide-phospholipase C is enhanced by PKC-beta 1 overexpression and may involve modulation of G-protein/phospholipase C coupling. In contrast, thrombin was 4.5-fold more effective in stimulation of phosphatidylcholine-phospholipase D activity in PKC3 cells than in control cells, as determined by phosphatidylethanol formation. In permeabilized cells, guanosine thiotriphosphate also stimulated phospholipase D activity more effectively in PKC3 cells than in control cells, suggesting that upregulation of phospholipase D activity by PKC overexpression occurs distal to the thrombin receptor. These results suggest that PKC may act as a switch to up-regulate phosphatidylcholine-phospholipase D and down-regulate phosphoinositide-phospholipase C stimulations.  相似文献   

10.
To investigate the possible role of protein kinase C activation in the desensitization of inositol phosphate production in endothelial cells we compared desensitization induced by agonists to that induced by the phorbol ester TPA. While histamine or thrombin induced desensitization of inositol phosphate production is homologous TPA induced desensitization is heterologous. The protein kinase C inhibitor H-7 reduced TPA desensitization but had no effect on the agonist induced desensitization. While downregulation of protein kinase C by long term (24 hr) treatment of the cells with TPA reduced the desensitization mediated by short term TPA-treatment it did not affect the agonist induced desensitization. These results suggest that desensitization of inositol phosphate production after agonist stimulation of endothelial cells is not mediated by protein kinase C.  相似文献   

11.
In resting Chinese hamster fibroblasts (CCL39) alpha-thrombin rapidly induces the breakdown of phosphoinositides. Accumulation of inositol phosphates (IP), measured in the presence of Li+, is detectable within 5s (seconds) of thrombin stimulation. Formation of inositol tris- and bisphosphates slightly precedes that of inositol monophosphate, indicating that thrombin activates primarily the phospholipase C-mediated generation of inositol trisphosphate from phosphatidylinositol 4,5-bisphosphate. Initial rates of IP production increase with thrombin concentration, with no apparent saturability over the range 10(-4)-10 U/ml. Thrombin-induced phosphoinositide hydrolysis rapidly desensitizes (t1/2 less than 5 min), but a residual activity, corresponding to about 10% of the initial stimulation is sustained for at least 9 h, in contrast with the undetectable activity of G0-arrested cells. This apparent desensitization may be due to a feedback regulation by protein kinase C, since pretreatment with the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) markedly inhibits (by up to 70%) subsequent thrombin-induced inositol phosphate formation. Conversely, growth factor deprivation of CCL39 cells results in a progressive increase of thrombin-induced phosphoinositide hydrolysis, from the very low level of exponentially growing cells to the maximal level of G0-arrested cells. This "up regulation" was found maximal in A51, a very well growth-arrested CCL39 derivative, and reduced or virtually abolished in two tumoral and growth factor-relaxed derivatives of CCL39. Although preliminary, this observation suggests that a persistent activation of phosphatidyl inositol breakdown might operate in variants selected for autonomous growth.  相似文献   

12.
Basic fibroblast growth factor (FGF) and alpha-thrombin can stimulate DNA synthesis in Chinese hamster fibroblasts (CCL39) by two separate signaling pathways (Chambard, J.C., Paris, S., L'Allemain, G., and Pouysségur, J. (1987) Nature 326, 800-803) but can also act synergistically. We have examined whether this synergism might depend upon changes in inositol lipid metabolism. Indeed, FGF, which has no effect on its own on phosphoinositide hydrolysis, potentiates (by up to 2-fold) thrombin-induced formation of inositol phosphates. This enhancing effect is also observed upon direct activation by AIF4- of the GTP-binding protein coupled to phospholipase C, and is best revealed when phospholipase C is weakly stimulated. With low thrombin concentrations or with AIF4-, the formation of inositol phosphates is immediately increased with a marked reduction of the initial lag, whereas at high thrombin concentrations, the stimulation by FGF becomes pronounced only after desensitization of phospholipase C to thrombin. FGF-induced potentiation is not mimicked by calcium ionophores, but is likewise elicited by epidermal growth factor, platelet-derived growth factor, and to a lesser extent by insulin, other growth factors known to activate receptor tyrosine kinases. We therefore propose that the tyrosine kinase-activating growth factors enhance the coupling between GTP-binding protein and phospholipase C, presumably through the phosphorylation of one of these two proteins. Treatment of cells with pertussis toxin attenuates thrombin-induced phospholipase C activity but does not impede the potentiation by FGF. Comparison of the potentiating effects of FGF on inositol phosphate formation and on DNA synthesis suggests than an increased production of second messengers by the inositol lipid pathway in the first hours of stimulation might be, at least in part, responsible for the synergistic actions of FGF and thrombin on DNA synthesis.  相似文献   

13.
17beta-Estradiol induced LPA(1) receptor desensitization in C9 cells stably expressing LPA(1) receptors and transiently expressing estrogen receptor alpha. Such desensitization was evidenced by a reduction in lysophosphatidic acid-mediated Ca(2+)mobilization and it was associated to receptor phosphorylation and internalization. These effects of 17beta-estradiol were rapid (taking place over 5 min) and were blocked by the estrogen receptor antagonist ICI 182780. Similarly, inhibitors of phosphoinositide 3-kinase (wortmannin and LY294002) and of protein kinase C (staurosporine and G? 6976) blocked 17beta-estradiol-induced LPA(1) receptor desensitization and phosphorylation. Confocal microscopy evidenced LPA(1) receptor internalization in response to 17beta-estradiol treatment. Association between LPA(1) receptors and protein kinase C alpha was suggested by co-immunoprecipitation assays. Protein kinase C alpha was associated with LPA(1) receptors in the absence of stimulus and such association further increased in a dynamic fashion in response to 17beta-estradiol. The results demonstrated that in C9 cells estrogens modulate LPA(1) action through estrogen receptor alpha with the participation of protein kinase C alpha and phosphoinositide 3-kinase.  相似文献   

14.
Prolonged exposure of A-10 cells to Arginine Vasopressin (AVP) resulted in the following responses: (a) loss of vasopressin receptors from the cell surface (30-40%), (b) increased basal levels of inositol and inositol monophosphate, (c) decreased inositol di- and trisphosphate production and decreased intracellular calcium release in response to a second challenge with AVP, (d) attenuation of AVP-mediated inhibition of isoproterenol-stimulated cAMP and ANF-stimulated cGMP accumulation and (e) attenuation of thrombin and ATP-mediated increase in inositol di- and trisphosphate accumulation and intracellular calcium release. All the above responses depended on the time of exposure of the cells to AVP with the responses being attenuated as early as 5-10 min of exposure to AVP. The desensitization also depended on the concentration of AVP used with 50% of maximal desensitization for each response being observed at 5 nM of AVP. This concentration of AVP corresponded well with the Kd of vasopressin for binding to these sites. Desensitization of protein kinase C (PKC) by prolonged exposure of the cells to PDBu or addition of the PKC inhibitor staurosporine during pretreatment with AVP did not prevent AVP-mediated desensitization, suggesting that PKC may not be involved in AVP-mediated desensitization in smooth muscle cells. It is concluded that AVP induced both homologous and heterologous desensitization of phosphatidylinositol turnover and calcium release in smooth muscle cells. The desensitization processes did not appear to be mediated by protein kinase C. The possibility that the locus of the heterologous desensitization may be at the level of substrates such as PI, PIP and PIP2 is discussed.  相似文献   

15.
Protein kinase C activity towards exogenous histone was found in a cytosolic fraction of rat renal mesangial cells. The analysis of the 100,000 x g supernatant fraction with DEAE-cellulose ion-exchange chromatography gave a protein kinase C preparation that was dependent on Ca2+ and phosphatidylserine for its activity. The addition of diolein decreased the Ca2+ requirement of the enzyme. 1-(5-Isoquinoline-sulfonyl)-2-methylpiperazine (H-7), sphingosine and cytotoxin I potently inhibited the protein kinase C activity prepared from mesangial cells as well as the 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced prostaglandin synthesis in intact mesangial cells. In the second part of the study, the desensitization of angiotensin II-stimulated phospholipase C activity was investigated. Angiotensin II induced a rapid increase in inositol trisphosphate (IP3) formation. Pretreatment of cells with angiotensin II, followed by removal of the hormone, resulted in a decreased response to a second application of angiotensin II. A similar protocol involving pretreatment with angiotensin II had no effect on subsequent responsiveness to [Arg8]vasopressin. The specific antagonist [Sar1, Ala8]angiotensin II did not stimulate IP3 formation neither did it inhibit the response to a subsequent stimulation with angiotensin II. After angiotensin II pretreatment, a prolonged incubation (120 min) restored responsiveness of the cells to angiotensin II. Pretreatment of mesangial cells with H-7, sphingosine or cytotoxin I almost completely diminished the desensitization of angiotensin II-stimulated IP3 generation. These results indicate that, in rat mesangial cells, angiotensin II induces a homologous desensitization of phospholipase C stimulation. It is proposed that protein kinase C activation plays an important role in the molecular mechanism of desensitization of angiotensin II-stimulated polyphosphoinositide metabolism.  相似文献   

16.
In this study, we characterised the mechanisms of Rac GTPase activation in human platelets stimulated by two physiological agonists, either thrombin, acting through membrane receptors coupled to heterotrimeric G-proteins, or collagen which is known to mobilise a tyrosine kinase-dependent pathway. Both agonists induced a rapid activation of Rac that was not significantly affected by the inhibition of integrin alpha(IIb)beta(3) engagement. Using pharmacological inhibitors, we found that phospholipase C activation and calcium mobilisation were essential for platelet Rac activation by either thrombin or collagen whereas protein kinase C inhibition was without effect. In contrast to Rac, Cdc42 activation was independent of phospholipase C activation, indicating that the two GTPases are differently regulated. We also found that phosphoinositide 3-kinase was not required for Rac activation in response to thrombin but was involved in its activation by collagen.  相似文献   

17.
The protease thrombin is a potent activator of various cell types. Thrombin cleaves and thereby activates its own seven-transmembrane-domain receptor which couples to G proteins. Thrombin also can inhibit neuronal differentiation, supposedly by degrading components of the extracellular matrix. Here we report that active thrombin induces immediate cell rounding and neurite retraction in differentiating N1E-115 and NG108-15 neural cells in serum-free culture. Serum (0.5-5% vol/vol) evokes similar responses, but the cell-rounding and neurite-retracting activity of serum is not attributable to thrombin. Neural cell rounding is transient, subsiding after 10-15 min, and subject to homologous desensitization, whereas retracted neurites rapidly degenerate. Thrombin action is inhibited by cytochalasin, but not colchicine. A novel 14-amino acid peptide agonist of the thrombin receptor fully mimics thrombin's morphoregulatory activity, indicating that thrombin-induced shape changes are receptor-mediated and not secondary to extracellular matrix degradation. Although thrombin receptors couple to phosphoinositide hydrolysis and Ca2+ mobilization, thrombin-induced shape changes appear to depend neither on the Ca2+/protein kinase C- nor the cyclic nucleotide-mediated signal transduction pathways; however, the morphological response to thrombin is blocked by pervanadate, an inhibitor of tyrosine phosphatases, and by broad-specificity kinase inhibitors. Our results suggest that the thrombin receptor communicates to an as-yet-uncharacterized effector to reorganize the actin cytoskeleton and to reverse the differentiated phenotype of neural cells.  相似文献   

18.
The ability of insulin to induce alpha1B-adrenoceptor phosphorylation and desensitization was tested in two model systems: rat-1 cells that stably express alpha1B-adrenoceptors, through transfection, and endogenously express insulin receptors and DDT1 MF2 cells that endogenously express both receptors. Insulin induced concentration-dependent increases in the phosphorylation state of the adrenergic receptors in the two models with similar EC50 values (0.5-2 nM). The effect was rapid in the two systems but it was sustained in rat-1 cells and transient in DDT1 MF2 cells. In both cell lines, the insulin-mediated phosphorylation of alpha1B-adrenoceptors was blocked by wortmannin and LY 294002, and by staurosporine and bisindolylmaleimide I, indicating that the effect involved phosphoinositide 3-kinase and protein kinase C activities. The adrenoceptor phosphorylation induced by insulin was associated to desensitization as evidences by a diminished elevation of intracellular calcium in response to noradrenaline. Inhibitors of phosphoinositide 3-kinase and protein kinase C blocked the functional desensitization induced by insulin.  相似文献   

19.
Abstract: Serotonin 5-HT2 receptor-mediated intracellular Ca2+ mobilization was investigated in rat glioma C6BU-1 cells. The receptors became desensitized after previous exposure to 5-HT in a time-and concentration-dependent manner. The desensitization of 5-HT2 receptor-mediated intracellular signaling appeared to be homologous because previous exposure to 5-HT did not alter the response to other transmitters such as thrombin or isoproterenol and because previous exposure to thrombin or isoproterenol did not diminish the response to 5-HT. The desensitization induced by pretreatment with 5-HT was potently prevented by the naphthalenesulfonamide derivative W-7, a calmodulin antagonist, when it was cosupplied with 5-HT. Furthermore, the preventive effect of W-7 was greater than that of W-5, a weak analogue of W-7, and than that of H-7, a nonselective inhibitor of protein kinases. These results suggest that 5-HT2 receptor-mediated Ca2+ mobilization can be desensitized homologously after prolonged exposure to 5-HT in a calmodulin-dependent manner in rat glioma C6BU-1 cells.  相似文献   

20.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号