首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
RNA turnover in Trypanosoma brucei.   总被引:14,自引:4,他引:10       下载免费PDF全文
  相似文献   

3.
Infection of human cells by adenovirus results in multiple alterations of host gene expression. To examine the effects of viral infection on the expression of a single gene, a line of human cells was developed which is resistant to growth in methotrexate and which contains amplified RNA and protein specific for dihydrofolate reductase (DHFR). Cytogenetic evidence indicated the presence of amplified DNA. Adenovirus infection of these cells caused an induction and subsequent decline in the synthesis of DHFR protein. The maximum DHFR induction occurred 16 to 19 h after infection and reached a level 2.5-fold greater than that observed in uninfected cells. Induction of DHFR protein synthesis was accompanied by concomitant increases in the level of steady-state DHFR-specific cytoplasmic RNA. The relative rate of DHFR mRNA production (i.e., the appearance of DHFR-specific mRNA sequences in the cytoplasm) also increased 2.5-fold during induction. Later in infection, the relative rate of DHFR protein synthesis declined, reaching a level below that observed in uninfected cells. This decline was accompanied by a similar decline in the steady-state levels of DHFR RNA and in the relative rate of synthesis of DHFR mRNA. These data suggest that adenovirus infection controls DHFR gene expression by increasing and subsequently decreasing the relative rate at which DHFR-specific mRNA sequences appear in the cytoplasm and enter the pool of mRNA available for translation.  相似文献   

4.
5.
6.
When a stationary phase cell culture of Arachis hypogaea L. is diluted into fresh media, there occurs a 10-fold increase in the rate of protein synthesis. The kinetics of the activation of amino acid-incorporating capacity show a lag of 10 to 15 minutes with maximal activity reached at 2 hours after dilution. The activation of protein synthesis is oxygen-dependent and is accompanied by a 2- to 4-fold increase in polyribosome content, as well as by a 3- to 4-fold increase in the rate of mRNA synthesis. Ribosomal function, as ascertained by determination of ribosomal transit time, is about 2.5 times more efficient in 2-hour diluted cultures as in cells immediately after dilution. These observations indicate that a very early response in the transition of plant cell cultures from the stationary state is an increased capacity for protein synthesis. At a molecular level, this increase in protein synthetic capacity is due in part to an increased mobilization of mRNA into polyribosomes and in part to a more efficient ribosomal translational capacity.  相似文献   

7.
SMITH  D. L. 《Annals of botany》1973,37(4):795-804
During the cell-division period of cotyledon development inPisum arvense L. cell volume increases slightly but nuclearvolume shows little variation and the DNA content remains atthe 2C to 4C level. During the main period of cell expansionthere is a close correlation between cell volume, nuclear volume,and nuclear DNA content, the nuclei of the largest storage cellsfinally attaining the 64C level. The rate of RNA synthesis increasesseveral days after the increase in DNA has begun and at thesame time accumulation of reserve protein and starch begins.RNA and starch synthesis apparently cease some time before maturationbut protein synthesis continues until the seeds are ripe. Cotyledondevelopment was found to comprise two distinct phases: an initialphase of cell division and differentiation during which DNA,RNA, and protein per unit volume of cell decline; and a phaseof reserve accumulation in which DNA per unit volume of cellremains constant but RNA and protein per unit volume increase,starch synthesis is initiated, and all the cotyledon cells assumethe properties of storage cells.  相似文献   

8.
The components of the insulin-like growth factor (IGF) axis and their roles in regulating proliferation and differentiation of the human colon adenocarcinoma cell line, Caco-2, have been investigated. Caco-2 cells proliferated in serum-free medium at 75% the rate observed in medium containing 10% fetal bovine serum. IGF-I (10 nM) increased Caco-2 cell growth in serum-free medium, but not to the rate seen with serum. Multiple IGF-II mRNA species were produced by Caco-2 cells, but IGF-I mRNA was undetectable. Secretion of radioimmunoassayable IGF-II corresponded with steady-state levels of IGF-II mRNA, neither of which was observed to change markedly over the course of 16 days of Caco-2 cell differentiation. Levels of sucrase-isomaltase mRNA, a marker for enterocytic differentiation, increased 12-fold between days 5 and 16 of culture. Northern blotting of total RNA and ligand blot and immunoblot analyses of serum-free conditioned medium revealed that Caco-2 cells produce several IGF binding proteins (IGFBPs), including IGFBP-2, -3, and -4, as well as a 31,000 M, species that was not identified. The pattern of IGFBP secretion changed dramatically during Caco-2 cell differentiation: IGFBP-3 and IGFBP-2 increased 8.5-fold and 5-fold, respectively, whereas IGFBP-4 and the 31,000 M, species decreased 43% and 90%. Caco-2 cell clones stably transfected with a human IGFBP-4 cDNA construct exhibited a 60% increase in steady-state level of IGFBP-4 mRNA, and secreted twice as much IGFBP-4 protein as controls. Moreover, IGFBP-4-overexpressing cells proliferated at only 25% the rate of control cells in serum-free medium, in conjunction with a 70% increase in expression of sucrase-isomaltase. In summary, these studies indicate that a complex IGF axis is involved in autocrine regulation of Caco-2 cell proliferation and differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Confluent cultures of adult bovine aortic endothelial (ABAE), correal endothelial (BCE), and fetal bovine heart endothelial (FBHE) cells form a monolayer of highly flattened, closely apposed, and nonoverlapping cells. In ABAE and BCE cultures, this is associated with a 50-fold decrease in the rate of DNA synthesis and correlates with a 14-fold decrease in protein synthesis. In contrast, in confluent FBHE cultures only partial decreases in the rates of DNA synthesis (6-fold) and protein synthesis (3-fold) are observed. FBHE cells therefore fulfill the morphological, but not the biochemical, criteria for confluent cultured endothelial cell monolayers. The appearance of the cytoskeletal elements actin, tubulin, and vimentin in sparse and confluent cultures of endothelial cells has been analyzed by two-dimensional gel electrophoresis and immunofluorescence. Sparse versus confluent ABAE, FBHE, and BCE cultures showed no changes in their relative rates of synthesis or cellular content of tubulin. Actin behaved similarly to tubulin in FBHE and BCE cultures, while in ABAE cultures a small increase (3-fold) in its relative rate of synthesis was observed in confluent versus sparse cultures. BCE cultures showed no change in the rate of synthesis of vimentin, but the cellular content of vimentin was markedly increased when cultures reached confluence. When the distribution of vimentin in both sparse and confluent BCE cultures was analyzed by immunofluorescence, in both cases it appeared distributed throughout the cytoplasm as thin fibers and bundles of fibers. In confluent ABAE cultures, both the relative amount and biosynthetic rate of vimentin increased by 15-fold. This increase in the intracellular accumulation of vimentin correlated with its immunofluorescent distribution within the cells. While in sparse cultures, vimentin appeared to be distributed as thin fibers, in confluent cultures thick curl-like fibrous bundles could be seen distributed throughout the cytoplasm and organized in a perinuclear ring. In contrast, in FBHE cultures no significant changes in the distribution and organization of rate of synthesis of vimentin were observed.  相似文献   

10.
Chinese hamster lung (CHL) cells transformed by wild-type simian virus 40 (cell line CHLWT15) or transformed by the simian virus 40 mutants tsA30 (cell lines CHLA30L1 and CHLA30L2) or tsA239 (cell line CHLA239L1) were used to determine the rates of turnover and synthesis of the T-antigen protein and the rate of turnover of the phosphate group(s) attached to the T-antigen at both the permissive and restrictive temperatures. The phosphate group turned over several times within the lifetime of the protein to which it was attached, with the exception of the phosphate group in the tsA transformants at 40 degrees C, which turned over at the same rate as the T-antigen protein. The steady-state levels of the T-antigens (molecular weights, 92,000 [92K] and 17K) and the amount of simian virus 40-specific RNA was also determined in each of the lines. The CHLA30L1 line contained two to three times more early simian virus 40 RNA than the CHLA30L2 line; although neither line formed colonies in agar at 40 degrees C, CHLA30L1 overgrew a normal monolayer at 40 degrees C. The rate of 92K-T-antigen synthesis was 1.5 times faster in CHLA30L1 than in CHLA30L2 at 33 degrees C and 4 times faster at 40 degrees C. The different phenotype of these two presumably isogenic cell lines seem to be related to the levels of the T-antigens. The ratios of the 92K T-antigen to the 17K T-antigens were similar in the two lines. Transformed CHL cell lines, unlike transformed mouse 3T3 cell lines, were found to contain very small amounts of the 56K T-antigen.  相似文献   

11.
12.
Measurements were made of the growth and of the changes in rates of protein turnover in the anterior latissimus dorsi muscle of the adult fowl in response to the attachment of a weight to one wing. Over 58 days there was a 140% increase in the protein content with similar increases in the RNA and DNA contents. The fractional rate of protein synthesis, measured by the continuous-infusion technique using [14C]proline, increased markedly during hypertrophy. This increase was mediated initially (after 1 day) by an increase in the RNA activity but at all other times reflected the higher RNA content. The rate of protein degradation, calculated from the difference between the synthesis and growth rates, appeared to increase and remain elevated for at least 4 weeks. At no time was there any suggestion of a fall in the rate of degradation. The following events are discussed as central to the changes that occur during skeletal-muscle hypertrophy. 1. Nuclear proliferation is necessary to maintain the characteristic synthesis rate because of the inability of existing nuclei to 'manage' increased protein synthesis for more than a limited period. 2. The increased protein breakdown during hypertrophy is consistent with the known over-production of a new muscle fibres and may indicate some 'wastage' during the growth. Such wastage may also be associated with myofibrillar proliferation. 3. Muscle stretch must be recognized as the major activator of growth and as such can be compared with the 'pleiotypic activators' that have been described for cells in culture.  相似文献   

13.
14.
Measles virus infection of unstimulated B lymphocytes suppresses both proliferation and differentiation into immunoglobulin-secreting cells. However, mitogenic stimulation of these infected cells results in cell volume enlargement, rapid RNA synthesis, and the expression of cell surface activation antigens 4F2, HLA-DS, and transferrin receptor. The cellular genes c-myc and histone 2B are induced during early G1 and S phase of the cell cycle, respectively, and viral RNA synthesis can be detected during this interval. However, total RNA synthesis is decreased at 48 h after stimulation, and the histone 2B RNA steady-state level at 48 h is fivefold less than that in uninfected cells. This sequence of events defines an arrest in the G1 phase of the cell cycle in measles virus-infected B cells.  相似文献   

15.
Expression of annexins as a function of cellular growth state   总被引:8,自引:1,他引:7       下载免费PDF全文
Annexins are a structurally related family of Ca2+ binding proteins of undertermined biological function. Annexin I (also called lipocortin 1) is a substrate for the EGF-stimulated tyrosine kinase and is postulated to be involved in mitogenic signal transduction. To investigate further the involvement of lipocortin 1 in cell proliferation, we measured lipocortin 1 levels in normal diploid human foreskin fibroblasts (HFF) to determine whether its expression changed as a function of growth status. For comparison, the expression of annexin V (also called endonexin II) was measured in HFF cells. Endonexin II is a protein with similar Ca2+ and phospholipid binding properties as lipocortin 1, but it is not a substrate for tyrosine kinases. Quiescent HFF cell cultures were induced to proliferate by either subculture to lower cell density, EGF stimulation, or serum stimulation. In all three protocols, proliferating HFF cells contained three- to fourfold higher levels of lipocortin 1 and three- to fourfold lower levels of endonexin II than quiescent HFF cells. In contrast, the expression of annexin II (also called calpactin I) and annexin IV (also called endonexin I) remained relatively unchanged in growing and quiescent HFF cells. Lipocortin 1 synthesis rate was eightfold higher and its turnover rate was 1.5-fold slower in proliferating compared to quiescent HFF cells. Endonexin II synthesis rate remained constant but its turnover rate was 2.2-fold faster in proliferating compared to quiescent HFF cells. In a separate set of experiments, annexin expression levels were measured in cultures of rat PC-12 cells, a pheochromocytoma that ceases proliferation and undergoes reversible differentiation into nondividing neuronlike cells in response to nerve growth factor (NGF). After NGF treatment, PC-12 cells expressed fivefold higher levels of endonexin II and 32-fold higher levels of calpactin 1. Lipocortin 1 and endonexin I were not expressed in PC-12 cells. In summary, lipocortin 1 expression exhibited a positive correlation with cell proliferation in HFF cells. The increased expression of endonexin II in quiescent HFF cells and differentiating PC-12 cells implies that this protein may play a more prominent role in nondividing cells.  相似文献   

16.
The expression of calmodulin mRNA and protein were measured during a growth cycle of carrot (Daucus carota L.) cells grown in suspension culture. A full-length carrot calmodulin cDNA clone isolated from a λgt10 library was used to measure steady-state calmodulin mRNA levels. During the exponential phase of culture growth when mitotic activity and oxidative respiration rates were maximal, calmodulin mRNA levels were 4- to 5-fold higher than they were during the later stages of culture growth, when respiration rates were lower and growth was primarily by cell expansion. Net calmodulin polypeptide synthesis, as measured by pulse-labeling in vivo with [35S]methionine, paralleled the changes in calmodulin steady-state mRNA level during culture growth. As a consequence, net calmodulin polypeptide synthesis declined 5- to 10-fold during the later stages of culture growth. The qualitative spectrum of polypeptides synthesized and accumulated by the carrot cells during the course of a culture cycle, however, remained largely unchanged. Calmodulin polypeptide levels, in contrast to its net synthesis, remained relatively constant during the exponential phases of the culture growth cycle and increased during the later stages of culture growth. Our data are consistent with increased calmodulin polypeptide turnover associated with periods of rapid cell proliferation and high levels of respiration.  相似文献   

17.
The dynamics of intracellular protein SH-group (PSH) content was studied cytochemically in the course of stimulation of cell proliferation in stationary cultures of an established Chinese hamster cell line and of human diploid embryo fibroblasts. The results were compared with the pattern of RNA synthesis during the prereplicative period. In Chinese hamster cells immediately after medium changing in stationary cultures there is an augmentation of PSH content in parallel withe the increase in RNA synthesis rate. Later on, the rate of RNA synthesis and PSH content are seen decreasing followed by a new increase in the rate of RNA synthesis correlated with the second rise in PSH content. In stationary cultures of human diploid fibroblasts, there is also an increase in the rate of RNA synthesis and in the content of SH after medium changing, but the second wave of RNA synthesis and the second rise in PSH content are not pronounced. The variation in PSH content reflects the shift in the cell metabolism during the prereplicative period and is not attributed to changes in cell protein content.  相似文献   

18.
We reported previously that a 32-36-kDa osteogenic protein purified from bovine bone matrix is composed of dimers of two members of the transforming growth factor (TGF)-beta superfamily: the bovine equivalent of human osteogenic protein-1 (OP-1) and bone morphogenetic protein-2a, BMP-2a (BMP-2). In the present study, we produced the recombinant human OP-1 (hOP-1) in mammalian cells as a processed mature disulfide-linked homodimer with an apparent molecular weight of 36,000. Examination of hOP-1 in the rat subcutaneous bone induction model demonstrated that hOP-1 was capable of inducing new bone formation with a specific activity comparable with that exhibited by highly purified bovine osteogenic protein preparations. The half-maximal bone-inducing activity of hOP-1 in combination with a rat collagen matrix preparation was 50-100 ng/25 mg of matrix as determined by the calcium content of day 12 implants. Evaluation of hOP-1 effects on cell growth and collagen synthesis in rat osteoblast-enriched bone cell cultures showed that both cell proliferation and collagen synthesis were stimulated in a dose-dependent manner and increased 3-fold in response to 40 ng of hOP-1/ml. Examination of the expression of markers characteristic of the osteoblast phenotype showed that hOP-1 specifically stimulated the induction of alkaline phosphatase (4-fold increase at 40 ng of hOP-1/ml), parathyroid hormone-mediated intracellular cAMP production (4-fold increase at 40 ng of hOP-1/ml), and osteocalcin synthesis (5-fold increase at 25 ng of hOP-1/ml). In long-term (11-17 day) cultures of osteoblasts in the presence of beta-glycerophosphate and L(+)-ascorbate, hOP-1 markedly increased the rate of mineralization as measured by the number of mineral nodules per well (20-fold increase at 20 ng of hOP-1/ml). Direct comparison of TGF-beta 1 and hOP-1 in these bone cell cultures indicated that, although both hOP-1 and TGF-beta 1 promoted cell proliferation and collagen synthesis, only hOP-1 was effective in specifically stimulating markers of the osteoblast phenotype.  相似文献   

19.
Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号