首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
F Wang  A Marchini    E Kieff 《Journal of virology》1991,65(4):1701-1709
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.  相似文献   

2.
E Tatsumi 《Human cell》1992,5(1):79-86
Two facts need to be pointed out to help explain why the history of Epstein-Barr virus (EBV) research has been inseparable from that of the studies with human hematopoietic cell lines of neoplastic and non-neoplastic origin. One is that Burkitt lymphoma (BL) cell lines, EBV-positive or-negative, can be established in culture quite easily. Thus, the BL cell lines which Epstein established were indeed some of the first hematopoietic as well as virus-carrying cell lines of human neoplastic origin. The other is that EBV-positive B-cell lymphoblastoid cell lines (B-LCL) of normal origin can be grown from samples of sero-positive individuals. B-LCL were often mistakenly regarded as being of neoplastic origin, but are almost always of normal cell origin. Very rarely, however, B-LCL with the same clonal markers as those of neoplastic cells have also been obtained. While the development of B-LCL has been referred to as the in vitro viral immortalization of human B cells and as a phenomenon representing the potential oncogenicity of EBV, the phenotypic and genotypic differences between B-LCL and EBV-carrying BL cells are obvious, indicating that the development of B-LCL per se does not prove the oncogenic activity of EBV. Two EBV-derived antigens, EBNA2 and latent-infection membrane protein (LMP), which are strongly expressed by B-LCL but not by BL cells, have recently been detected in EBV-positive proliferative B cells in patients with organ transplants, suggesting that the proliferating of B-LCL-like cells may take place as an initial step of the multi-step in vivo oncogenesis of EBV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
N Shimizu  H Yoshiyama    K Takada 《Journal of virology》1996,70(10):7260-7263
We lack a host cell supporting an efficient lytic replication of Epstein-Barr virus (EBV). Recently, we isolated EBV-negative cell clones from the Akata cell line (referred as Akata- [N. Shimizu, A. Tanabe-Tochikura, Y. Kuroiwa, and K. Takada, J. Virol. 68:6069-6073, 1994). Since the parental Akata line is one of the highest EBV producers, we examined whether Akata- cells had become a good host for EBV propagation. The parental Akata cells have about 20 copies of EBV plasmid per cell. A drug resistance gene was inserted into one of them by homologous recombination. The resultant virus preparation, a mixture of wild-type and recombinant EBV, was used to infect Akata- cells. After incubation in the selective medium, drug-resistant Akata- cell clones were isolated and proved to be infected with recombinant EBV only. By treatment of the cells with antiimmunoglobulin antibodies, a large amount of recombinant EBV (i.e., more than 10 microg/1-liter culture) was produced. In contrast, three other B-lymphoma lines, BJAB, Ramos, and Louckes, were nonpermissive for virus replication. These results indicate that Akata- cells are suitable for propagation of recombinant EBV clonally, which becomes a powerful tool for determining EBV genetics and which makes it possible to use EBV as a vector for gene therapy.  相似文献   

4.
We found that spontaneous and 12-0-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus (EBV) reactivation occurred in short-term (ST)-cultured EBV-infected epithelial cell lines GT38 and GT39 after their establishment; however, it diminished in the long-term (LT)-cultured cells passaged for more than 2 years from ST-cultured cells. We hypothesized that the EBV reactivation may be related to the EBV DNA copy number in the cells. A higher level of EBV DNA content was detected in ST-cultured cells than in LT-cultured cells by Southern hybridization using an EBV DNA XhoI probe. Fluorescence in situ hybridization using EBV DNA BamHI W fragments showed that ST-cultured cells contained a higher EBV DNA copy number than that of LT-cultured cells. EBV DNA-negative cells were detected in small proportions in LT-cultured cells, but were undetected in ST-cultured cells. These results demonstrate that EBV genomes are not maintained stably in the cell lines, and some of them are lost in continuous passages of the cells. We discuss the mechanisms of reduction of EBV reactivation and EBV DNA in the cell lines.  相似文献   

5.
The localization of the Epstein-Barr virus (EBV) genome in chromosomes of human B-lymphoblastoid cell lines (LCLs) transformed with EBV, and the effect of EBV DNA on the level of sister chromatid exchange (SCE) in Bloom's syndrome (BS) B-LCLs, were examined with chromosomal in situ hybridization techniques using a 3H-EBV DNA probe. EBV DNA was detected in chromosomes 1–5 and 13–15 at specific G band regions in BS as well as in normal B-LCLs, regardless of SCE. Several chromosomal sites (1p31, 1q31, 4q22–24, 5q21, 13q21, 14q21) carrying EBV DNA seemed to be very characteristic in normal as well as in BS B-LCLs. There was no statistically significant difference in silver grain counts due to EBV DNA and their distribution in different chromosomes or groups among normal and BS B-LCLs with normal and high SCE. These findings strongly indicate that EBV infection did not introduce a correcting factor for BS SCE.  相似文献   

6.
W Siegert  T M?nch 《Blut》1981,43(5):297-305
Increased hexose uptake is a marker for viral transformation, as has been shown in non-human fibroblasts transformed by oncogenic viruses. If this phenomenon is a general expression of viral induced transformation it should also apply on different oncogenic virus-cell systems. Recently two human EBV-negative lymphoma lines were converted to a stable EBV-positive state by infection with EBV. According to their biochemical and biological properties they enable us to study events associated with EBV-transformation. We analysed the uptake of (3H) glucosamine and (3H) 2-deoxy-D-glucose into BJAB and Ramos and their EBV-converted sublines and found a clear increase of the rate of uptake of both sugars in the EBV-positive sublines. Control experiments confirmed that the increased uptake was due to alterations on the level of the hexose membrane carriers and not due to increased metabolism. The observation of increased hexose uptake in the only presented available virus transformed human cell system is a strong argument for the general importance of this transformation-associated membrane change.  相似文献   

7.
During cultivation of the Epstein-Barr virus (EBV)-positive Burkitt's lymphoma (BL) line Akata, it was noted that EBV DNA is lost from some of the cells. Isolation of EBV-positive and EBV-negative clones with the same origin made it possible to examine the effects of EBV in BL cells. The results indicate that malignant phenotypes of BL, such as growth in low serum, anchorage-independent growth in soft agar, and tumorigenicity in nude mice, are dependent on the presence of EBV genomes and underline the oncogenic function of EBV in human cancer.  相似文献   

8.
9.
Ito S  Yanagi K 《Journal of virology》2003,77(6):3824-3831
Epstein-Barr virus (EBV) EBNA-1 is the only EBV-encoded protein that is essential for the once-per-cell-cycle replication and maintenance of EBV plasmids in latently infected cells. EBNA-1 binds to the oriP region of latent EBV plasmids and cellular metaphase chromosomes. In the absence of oriP-containing plasmids, EBNA-1 was highly colocalized with cellular DNA replication foci that were identified by immunostaining S-phase cells for proliferating cell nuclear antigen and replication protein A (RP-A) in combination with DNA short pulse-labeling. For the association of EBNA-1 with the cellular replication focus areas, the EBNA-1 regions of amino acids (aa) 8 to 94 and/or aa 315 to 410, but not the RP-A-interacting carboxy-terminal region, were necessary. These results suggest a new aspect of latent virus-cell interactions.  相似文献   

10.
The EBV carrier state is almost general in men. The virus induces B lymphocyte proliferation in vitro, but this is counteracted in vivo by the immune response. Therefore, EBV-induced malignancies occur only when the immune response is impaired, e.g. in transplant recipients. The versatility of the viral gene expression strategy secures the consistent maintainance of the virus in healthy individuals. The viral proteins required for transformation render the cell immunogenic. Expression of the transforming genes leads to rejection, but these genes are not required for the maintenance of the viral genome. EBV is an important contributor for malignant transformation, even when it does not directly induce cell proliferation. Several mechanisms have been unravelled in EBV-associated tumors whereby the virus may modify the cellular phenotype and may influence the interaction of tumor cells with their microenvironment. The virus carrier state can lead to the evasion of apoptosis and can intensify the response to growth promoting signals, too.  相似文献   

11.
There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells.  相似文献   

12.
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis.Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions.The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program.In this short review we touch upon aspects which are the subject of our present work.We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells.The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.  相似文献   

13.
14.
In B-cell fractions isolated from human peripheral blood, the frequency of surface immunoglobulin-positive and of complement receptor-positive cells showed a good correlation with the frequency of EBV-binding cells, as detected by membrane fluorescence or by a quantitative bioassay for infectious virus in the absorbed supernatant fluid. There was a close relationship between all three parameters mentioned, the frequency of EBNA-positive cells 2 or 3 days after the infection, and the stimulation of cellular DNA synthesis. So-called O-cell fractions remaining after the removal of nylon adherent and E-rosetting cells contained a certain frequency of complement receptor-positive cells and absorbed EBV to a limited extent, but did not respond to EBV infection with EBNA induction or stimulation of DNA synthesis. None of the T-cell fractions absorbed EBV to a detectable extent. This includes the Tea+ fraction that contained a certain proportion of complement receptor-positive cells. It is concluded that the previously demonstrated relationship between EBV receptors and complement receptors on B-lymphoblastoid lines also holds for peripheral B lymphocytes. In these cells, virus absorption is followed by an intracellular infectious process, signaled by the appearance of EBNA and cellular DNA synthesis. O cells carry complement receptors and absorb EBV to a certain extent, but do not respond with EBNA synthesis or DNA stimulation, presumably due to intracellular restrictions. T cells do not bind EBV, and the complement receptors present on some cells of the Tea+ fraction do not function as EBV receptors.  相似文献   

15.
16.
C Alfieri  F Ghibu  J H Joncas 《CMAJ》1984,131(10):1249-1252
A new wild-type isolate of Epstein-Barr virus (EBV) was identified in follow-up studies of a case of chronic active EBV infection in an 8-year-old girl who had high titres of antibody to viral capsid antigen and early antigen (EA) (greater than 20 480 and 2560 respectively), persistent splenomegaly and abnormal immunologic features. More than 10 throat washings from this patient failed to transform cord blood lymphocytes (CBL), but at least 7 were able to induce EA in Raji cells. Supernatants from cultures of the lymphoblastoid cell line obtained by in-vitro infection of this patient''s leukocytes with the B95-8 strain of EBV revealed a herpesvirus particle when examined by electron microscopy. The same supernatants were unable to transform CBL but could induce EA in Raji cells upon superinfection. In 30 or more trials the patient''s lymphocytes never transformed spontaneously but did become positive for EBV nuclear antigen and EA in the first week of culture at least twice. Parallel studies performed on the father of the patient yielded similar results. This, then, is the first report documenting lytic activity associated with a wild-type EBV isolate.  相似文献   

17.
Nasopharyngeal carcinomas (NPC) are usually Epstein-Barr virus (EBV) positive, but, with the exception of C666-1 cells, these cells lose the EBV genomes when grown in culture. Maintenance of EBV requires the viral EBV nuclear antigen 1 (EBNA1) protein, which ensures the replication and mitotic segregation of the genomes through interactions with OriP. Here we compare the abilities of C666-1 and NPC cells that have lost EBV genomes to replicate and segregate OriP plasmids. We found that either cell line can replicate and maintain OriP plasmids for extended periods under conditions where low levels of EBNA1 are expressed but that high EBNA1 levels selectively interfered with mitotic segregation.  相似文献   

18.
In order to characterize the substructure of the Epstein-Barr virus determined nuclear antigen (EBNA) which is considered to have a molecular weight of 180 K in its native form, we have examined the antigenic specificity of the polypeptides obtained after denaturation of this molecule. Two procedures were employed; treatment by sodium dodecyl sulfate (SDS) and heat followed by gel electrophoresis, or denaturation by guanidine hydrochloride followed by gel filtration, which allowed us to detect a specific antigenic activity in the 50 K region, following dialysis. The denatured molecules could be reassociated into larger molecules (50 to 180 K) which retain the property of binding to fixed nuclei, as does native EBNA. These results indicate that EBNA has a polymeric structure and that 50 K subunits carry the antigenic determinants.  相似文献   

19.
The linear form of Epstein-Barr virus (EBV) DNA has homologous direct tandem repeats of approximately 500 bp at each terminus (TR). After infection, EBV DNA circularizes via the TR to form the intracellular episomal DNA. To analyze the mechanism of the synthesis of linear DNA through possible replicative intermediates, the terminal fragments were identified in the total intracellular DNA and the covalently closed circular DNA from a productively infected cell line after induction of replication or after treatment with an inhibitor of viral DNA synthesis. These studies indicate that some of the fused terminal fragments detected in the total intracellular DNA are replication-dependent forms which are selectively excluded from the covalently closed circular fraction and are eliminated after treatment with acyclovir. The EBV terminal restriction enzyme fragments were identified in three producer cell lines, each with a characteristic number of TR in the intracellular episomal DNA. Identification of the termini in cell lines established with the three virus strains revealed that the newly transformed cell lines had a greater number of TR than did the template DNA in the producer cell line. The increase in the number of TR in progeny episomes indicates that linear DNA is produced from concatameric replicative intermediates rather than from amplified catenated circular intermediates.  相似文献   

20.
Chen YJ  Tsai WH  Chen YL  Ko YC  Chou SP  Chen JY  Lin SF 《PloS one》2011,6(3):e17809
Epstein-Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号