首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GTP-sensitive adenylate cyclases in liver membranes achieved by glucagon and by cholera toxin pretreatment displayed similar responses to added GTP in assay with respect to magnitude and sensitivity. However, their susceptibility to GTP formed during incubation from added GDP catalyzed by membrane-associated nucleoside diphosphate kinase(mNDPK) was different. Adenylate cyclase pretreated with cholera toxin was essentially unaffected by added GDP, while further addition of glucagon produced activation. GTP-stimulated adenylate cyclase activity in toxin-treated membranes was inhibited by added GDP, whereas glucagon addition reduced the inhibitory action of GDP by two orders of magnitude. Since neither pretreatment with toxin nor glucagon addition altered GTP formation by mNDPK, these observations suggest a possible presence of a mechanism by which hormone makes adenylate cyclase susceptible to the GTP formed via mNDPK for activation.  相似文献   

2.
A membrane-bound protein cofactor (ARF) is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory regulatory component (Gs) of adenylate cyclase. Improved methods for the purification of ARF from bovine brain are described. ARF has a high-affinity binding site for guanine nucleotides. Binding of GTP or GTP gamma S to ARF is necessary for the activity of the cofactor; GDP X ARF does not support ADP-ribosylation of Gs. Although the protein as purified contains stoichiometric amounts of GDP, GTPase activity of isolated ARF was not detected. Cholera toxin-dependent activation of adenylate cyclase thus requires two guanine nucleotide binding proteins.  相似文献   

3.
We have introduced two types of mutations into cDNAs that encode the alpha subunit of Gs, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase. The arginine residue (Arg187) that is the presumed site of ADP-ribosylation of Gs alpha by cholera toxin has been changed to Ala, Glu, or Lys. The rate constant for hydrolysis of GTP by all of these mutants is reduced approximately 100-fold compared with the wild-type protein. As predicted from this change, these proteins activate adenylyl cyclase constitutively in the presence of GTP. Despite these substitutions, cholera toxin still catalyzes the incorporation of 0.2-0.3 mol of ADP-ribose/mol of mutant alpha subunit. The sequence near the carboxyl terminus of Gs alpha was altered to resemble those in Gi alpha polypeptides, which are substrates for pertussis toxin. Despite this change, the mutant protein is a poor substrate for pertussis toxin. Although this protein has unaltered rates of GDP dissociation and GTP hydrolysis, its ability to activate adenylyl cyclase in the presence of GTP is enhanced by 3-fold when compared with the wild-type protein but only when these assays are performed after reconstitution of Gs alpha into cyc- (Gs alpha-deficient) S49 cell membranes.  相似文献   

4.
This study was aimed to elucidate whether GDP can mediate hormonal signal to adenylate cyclase in hepatic glucagon sensitive adenylate cyclase with ATP as substrate. Conversion of added GDP to GTP catalyzed by nucleoside diphosphate kinase was suppressed to less than 0.3% of added GDP by including UDP. Inhibition of this enzyme activity by UDP was accompanied by a preferential loss of the stimulatory effect of glucagon plus GDP on cyclase activity without changes in effects of glucagon plus GTP, glucagon plus guanosine 5'-(beta, gamma-imino)triphosphate, and NaF. Under this condition, i.e. in the presence of UDP, GDP competitively inhibited the actions of GTP (Ki for GDP, 1 microM) and guanosine 5'-(beta, gamma-imino)triphosphate in the presence of glucagon, the inhibition being complete at high GDP concentrations. GDP also inhibited cyclase activity stimulated by NaF with UDP but did only slightly without UDP. It was demonstrated that nucleoside diphosphate kinase is located in membranes in addition to cytosol fraction. However, the activity of membrane-associated enzyme was not affected by the addition of glucagon. Based on these observations, it is concluded that GDP is unable to mediate hormonal signal to adenylate cyclase and that it acts as an inhibitor of cyclase activity stimulated by GTP or its analog along with hormone. The results suggest a possible role of membrane-associated nucleoside diphosphate kinase in determining GTP and GDP levels at or near their binding site so as to replenish GTP and, thereby, decrease the inhibitory action of GDP when hormone is present.  相似文献   

5.
We have utilized purified reactants and cofactors to examine the form of the stimulatory guanine nucleotide-binding regulatory component (Gs) of adenylate cyclase that serves as a substrate for ADP-ribosylation by cholera toxin; we have also investigated some of the consequences of that covalent modification. Activation of Gs with nonhydrolyzable analogs of GTP, which causes dissociation of its subunits, completely inhibits the toxin-catalyzed covalent modification. However, this effect cannot be explained by subunit dissociation, since activation of Gs by fluoride is not inhibitory and ADP ribosylation of the alpha (45,000-Da) subunit of Gs proceeds equally well in the presence and absence of the beta (35,000-Da) subunit. ADP-ribosylation of the alpha subunit of Gs decreases its apparent affinity for the beta subunit; however, the affinity of alpha and ADP-ribosyl-alpha for GTP appear to be approximately the same. ADP-ribosylation of Gs thus promotes the dissociation of its alpha and beta subunits. This effect may account for or contribute to the activation of adenylate cyclase by cholera toxin.  相似文献   

6.
There are two functionally and physically distinct types of guanyl nucleotide site associated with the adenylate cyclase system of pigeon erythrocytes. One is on the well known regulatory protein, N, that mediates the adenylate cyclase response to hormones, guanyl nucleotides and fluoride, and is the substrate for ADP-ribosylation by cholera toxin. We now describe a second site that must be occupied by GTP or an analog of GTP before N can be ADP-ribosylated. We call this second site S. It differs from the site on N in many respects. GTP appears to be rapidly hydrolyzed when it is bound to N but not when bound at S. GTP analogs such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) bind stably to both sites but the binding of GTP gamma S to N is more sensitive to EDTA and is more easily prevented by guanosine 5'-O-(2-thiodiphosphate). The nucleotide binding only to S is promoted by the cytosolic protein required by cholera toxin. Isoproterenol decreases GTP gamma S binding to S while indirectly increasing GTP gamma S binding to N. By adjusting the binding conditions, the nucleotides bound functionally to N and S can be varied independently and then the effect of ADP-ribosylation upon the adenylate cyclase activity can be seen to depend on the type of nucleotide bound to N. This activity rises, falls slightly, or remains at zero, if N is occupied by GTP, GTP gamma S, or guanosine 5'-O-(2-thiodiphosphate, respectively.  相似文献   

7.
Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin.  相似文献   

8.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

9.
A 40-kDa protein, in addition to the alpha-subunits of Gs (a GTP-binding protein involved in adenylate cyclase stimulation), was [32P]ADP-ribosylated by cholera toxin (CT) in the membranes of neutrophil-like HL-60 cells, only if formyl Met-Leu-Phe (fMLP) was added to the ADP-ribosylation mixture. The 40-kDa protein proved to be the alpha-subunit of Gi serving as the substrate of pertussis toxin, islet-activating protein (IAP). No radioactivity was incorporated into this protein in membranes isolated from HL-60 cells that had been exposed to IAP. Gi-alpha purified from bovine brain and reconstituted into IAP-treated cell membranes was ADP-ribosylated by CT plus fMLP. Gi-alpha was ADP-ribosylated by IAP, but not by CT plus fMLP, in membranes from cells that had been pretreated with CT plus fMLP. When membrane Gi-alpha [32P]ADP-ribosylated by CT plus fMLP or IAP was digested with trypsin, the radiolabeled fragments arising from the two proteins were different from each other. These results suggest that CT ADP-ribosylates Gi-alpha in intact cells when coupled fMLP receptors are stimulated and that the sites modified by two toxins are not identical. CT-induced and fMLP-supported ADP-ribosylation of Gi-alpha was favored by Mg2+ and allow concentrations of GTP or its analogues but suppressed by GDP. The ADP-ribosylation did not occur at all, even in the presence of ADP-ribosylation factor that supported CT-induced modification of Gs, in phospholipid vesicles containing crude membrane extract in which Gi was functionally coupled to stimulated fMLP receptors. Thus, Gi activated via coupled receptors is the real substrate of CT-catalyzed ADP-ribosylation. This reaction may depend on additional factor(s) that are too labile to survive the process of membrane extraction.  相似文献   

10.
We report a 39 kDa substrate for cholera and pertussis toxins is present in D. discoideum membranes. This protein did not co-migrate with alpha subunits of either Gs (45 kDa and 52 kDa) or Gi (41 kDa) from control mammalian cells. The presence of GTP or its non-hydrolyzable analogs enhanced the ADP-ribosylation in response to cholera toxin, but did not significantly alter ADP-ribosylation by pertussis toxin. Divalent cations inhibited the ADP-ribosylation by both toxins. The possible association of this novel G-protein with D. discoideum adenylate cyclase may underlie some of the unique regulatory features of this enzyme. Alternatively, this G-protein may regulate one of several other cellular responses mediated by the cAMP receptor.  相似文献   

11.
In adipocyte membranes, cholera toxin may ADP-ribosylate the islet-activating protein (IAP) substrate, under certain conditions. Covalent modification is maximal in the absence of a guanosine triphosphate; in the presence of 5'-guanylylimidodiphosphate, incorporation of [32P]ADP-ribose is markedly reduced. ADP-ribosylation by cholera toxin has similar functional consequences as does IAP-mediated modification, i.e. the biphasic response of isoproterenol-stimulated adenylate cyclase to GTP and the inhibition by N6-phenylisopropyladenosine is abolished, and only the stimulatory phase remains. In contrast, membranes treated with cholera toxin in the presence of GTP display both the stimulatory and inhibitory responses to GTP. The binding of the adenosine analog [3H]N6-phenylisopropyladenosine is increased in the presence of GTP. Treatment of the membranes with IAP, but not with cholera toxin in the absence of GTP, reverses this GTP effect on [3H]N6-phenylisopropyladenosine binding. However, [3H]N6-phenylisopropyladenosine binding is still sensitive to GTP in membranes treated with cholera toxin in the presence of GTP. In adipocyte and cerebral cortical membranes, the IAP substrate appears as a 39,000/41,000-Da doublet which does not appear to reflect protease activity. On two-dimensional polyacrylamide gels, these two proteins migrate with approximate pI values 6.0 and 5.6, respectively. Although both behave similarly under all conditions explored in this study, it is unknown whether both, or only one, are involved in inhibition of adenylate cyclase activity. These results extend the already striking homology between the adenylate cyclase complex and the visual system. Ni, as well as transducin, may be ADP-ribosylated by cholera toxin and by IAP, and, in all cases, there are functional consequences.  相似文献   

12.
A factor (ARF) that is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory, GTP-binding regulatory component (Gs) of adenylate cyclase has been purified about 2000-fold from cholate extracts of rabbit liver membranes. ARF is an intrinsic membrane protein with Mr = 21,000. The final product can be resolved into two polypeptides with very similar molecular weights; each of these has ARF activity. The ADP-ribosylation of Gs can now be studied with defined components. GTP and ARF are both necessary cofactors. The data imply that the substrates for the activated toxin are NAD and a GTP X Gs X ARF complex, and the reaction proceeds in a lipid environment. The apparent ability of ARF to bind to the alpha subunit of Gs suggests that it may play another, unknown role in the regulation of adenylate cyclase activity.  相似文献   

13.
S C Tsai  R Adamik  J Moss  M Vaughan 《Biochemistry》1991,30(15):3697-3703
Cholera toxin activates adenylyl cyclase by catalyzing the ADP-ribosylation of Gs alpha, the stimulatory guanine nucleotide binding protein of the cyclase system. This toxin-catalyzed reaction, as well as the ADP-ribosylation of guanidino compounds and auto-ADP-ribosylation of the toxin A1 protein (CTA1), is stimulated, in the presence of GTP (or GTP analogue), by 19-21-kDa proteins, termed ADP-ribosylation factors or ARFs. These proteins directly activate CTA1 in a reaction enhanced by sodium dodecyl sulfate (SDS) or dimyristoylphosphatidylcholine (DMPC)/cholate. To determine whether ARF stimulation of ADP-ribosylation is associated with formation of a toxin-ARF complex, these proteins were incubated with guanine nucleotides and/or detergents and then subjected to gel permeation chromatography. An active ARF-toxin complex was observed in the presence of SDS and GTP gamma S [guanosine 5'-O-(3-thiotriphosphate)] but not GDP beta S [guanosine 5'-O-(2-thiodiphosphate)]. Only a fraction of the ARF was capable of complex formation. The substrate specificities of complexed and noncomplexed CTA differed; complexed CTA exhibited markedly enhanced auto-ADP-ribosylation. In the presence of GTP gamma S and DMPC/cholate, an ARF-CTA complex was not detected. A GTP gamma S-dependent ARF aggregate was observed, however, exhibiting a different substrate specificity from monomeric ARF. These studies support the hypothesis that in the presence of guanine nucleotide and either SDS or DMPC/cholate, ARF and toxin exist as multiple species which exhibit different substrate specificities.  相似文献   

14.
A cytosolic, macromolecular factor required for the cholera toxin-dependent activation of pigeon erythrocyte adenylate cyclase and cholera toxin-dependent ADP-ribosylation of a membrane-bound 43 000 dalton polypeptide has been purified 1100-fold from horse erythrocyte cytosol using organic solvent precipitation and heat treatment. This factor, 13 000 daltons, does not absorb to anionic or cationic exchange resins, is sensitive to trypsin or 10% trichloroacetic acid and is not extractable by diethyl ether. Activation of adenylate cyclase by cholera toxin requires the simultaneous presence of ATP (including possible trace GTP), NAD+, dithiothreitol, cholera toxin, membranes and the cytosolic macromolecular factor. Reversal of cholera toxin activation of adenylate cyclase, and of the toxin-dependent ADP-ribosylation, requires the presence of the cytosolic factor. The ability of the purified cytosolic factor to influence the hormonal sensitivity of liver membrane adenylate cyclase may provide clues to its physiological functions.  相似文献   

15.
The alpha-subunit of Gi-2, in addition to that of Gs (GTP-binding proteins involved in adenylate cyclase inhibition and stimulation, respectively) was ADP-ribosylated by cholera toxin in HL-60 cell membranes when a chemotactic receptor was stimulated by formyl-Met-Leu-Phe (fMLP), and the sites modified by cholera and pertussis toxins on the alpha-subunit of Gi-2 were different (Iiri, T., Tohkin, M., Morishima, N., Ohoka, Y., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 21394-21400). In order to investigate how the functions of Gi-2 were modified by cholera toxin, the ADP-ribosylated and unmodified proteins were purified from HL-60 cell membranes that had been incubated in the presence and absence of cholera toxin, respectively. The modified Gi-2 displayed unique properties as follows. 1) The ADP-ribosylated alpha-subunit had a more acidic pI than the unmodified one, leading to a partial resolution of the modified Gir2 trimer from the unmodified protein by an anion column chromatography. 2) When the purified proteins were incubated with [gamma-32P]GTP, the radioactivity was more greatly retained in the modified Gi-2 than in the unmodified protein. 3) The actual catalytic rate (kcat) of GTP hydrolysis was, indeed, markedly inhibited by cholera toxin-induced modification. 4) There was an increase in the apparent affinity of Gi-2 for GDP by cholera toxin-induced modification. 5) The modified Gi-2 exhibited a low substrate activity for pertussis toxin-catalyzed ADP-ribosylation. 6) A high-affinity fMLP binding to HL-60 cell membranes was more effectively reconstituted with the ADP-ribosylated Gi-2 than with the unmodified protein. These results suggested that the agonist-fMLP receptor complex was effectively coupled with the ADP-ribosylated Gi-2, resulting in the GTP-bound form, and that the hydrolysis of GTP on the modified alpha-subunit was selectively attenuated. Thus, cholera toxin ADP-ribosylated Gi-2 appeared to be not only a less sensitive pertussis toxin substrate but also an efficient signal transducer between receptors and effectors.  相似文献   

16.
ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.  相似文献   

17.
Adenylate cyclase (EC 4.6.1.1) activity in mouse liver plasma membranes is increased fivefold when animals are pretreated with cholera toxin. The increase in activity is detectable within 20 min of an intravenous injection of the toxin. The response of the control and cholera-toxin-activated adenylate cyclase to hormones, GTP, and NaF is complex. GTP causes the same fold stimulation of control and toxin-activated cyclase, but glucagon and NaF remain the most potent activators of liver adenylate cyclase irrespective of whether the enzyme is activated by cholera toxin. Determination of kinetic parameters of adenylate cyclase indicates that cholera toxin, hormones, and NaF do not change the affinity of the enzyme for ATP-Mg nor do they alter the Ka for free Mg2+. High concentrations of Mg2+ inhibit adenylate cyclase that is stimulated by either cholera toxin, glucagon, or NaF. These same Mg2+ concentrations have no effect on the basal activity of the enzyme or its activity in the presence of GTP.  相似文献   

18.
The translocation of the alpha subunits of Gs from the membrane to the cytosol by iloprost, a stable prostacyclin analogue, was studied in mouse mastocytoma P-815 cells. In the presence of guanosine 5'-O-(thiotriphosphate) (GTP gamma S), iloprost stimulated the adenylate cyclase activity, caused the release of both 42- and 45-kDa proteins reactive with the anti Gs alpha carboxyl-terminal antibody, RM/1, from the membrane and attenuated cholera toxin-catalyzed ADP-ribosylation of the 42- and 45-kDa proteins in the membrane. The iloprost-stimulated adenylate cyclase activity and release of Gs alpha from the membrane were markedly suppressed by RM/1. Cholera toxin treatment also stimulated the adenylate cyclase activity and release of Gs alpha from the membrane, and iloprost synergistically potentiated these actions of cholera toxin. In mastocytoma cells, iloprost induced the translocation of both 42- and 45-kDa Gs alpha from the membrane to the cytosol, 45-kDa Gs alpha remaining in the cytosol for a longer time than 42- kDa Gs alpha. Whereas 42-kDa Gs alpha in the cytosol was eluted at the position of Mr = approximately 40,000 45-kDa Gs alpha was eluted at the position of Mr = approximately 120,000 from a Superose 12 gel filtration column. In contrast, both 42- and 45-kDa Gs alpha released in vitro from the membrane by iloprost plus GTP gamma S were eluted at the position of Mr = approximately 40,000, but only 45-kDa Gs alpha was eluted at the position of Mr = approximately 120,000 when it was incubated with cytosol. These results taken together demonstrate that iloprost induces the translocation of both 42- and 45-kDa Gs alpha from the membrane to the cytosol and that only the 45-kDa Gs alpha released exists in the cytosol as a soluble complex with unidentified component(s) in mastocytoma cells.  相似文献   

19.
When rat adipocyte membranes had been labeled with [3H]GTP in the presence of a beta-adrenergic agonist, the subsequent [3H]GDP release was stimulated by beta-agonists or agonists (e.g. glucagon and secretin) of other "activatory" receptors involved in activation of adenylate cyclase, but was not stimulated by agonists (e.g. prostaglandin E1 and adenosine) of "inhibitory" receptors involved in cyclase inhibition. On the contrary, agonists of inhibitory receptors were effective in stimulating GDP release from hamster adipocyte membranes that had been labeled via inhibitory alpha 2-adrenergic receptors, but an activatory receptor agonist such as isoproterenol was not. Thus, the guanine nucleotide regulatory protein (Ni) involved in adenylate cyclase inhibition is an entity distinct from the regulatory protein (Ns) involved in cyclase activation, and multiple activatory or inhibitory receptors are coupled to a respective common pool of Ns or Ni. Preactivated cholera toxin added together with NAD enhanced GDP release from rat adipocyte membranes prelabeled with isoproterenol but was without effect on the release from hamster adipocyte membranes that had been labeled with an alpha-agonist. In sharp contrast, the active subunit of islet-activating protein, pertussis toxin, failed to alter GDP release from the former membrane but completely abolished inhibitory agonist-induced stimulation of GDP release from the latter membrane preparation in the presence of NAD. Thus, the site of action of cholera toxin is Ns, while that of islet-activating protein is Ni. The function of Ni to communicate between inhibitory receptors and adenylate cyclase was lost when it was ADP-ribosylated by islet-activating protein.  相似文献   

20.
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号